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Abstract 

In this paper  we  will learn about the matrix eigenvalue problem AX = kX where A is a square matrix and 

k is a scalar (number). We  will learn how to determine the eigenvalues (k) and corresponding eigenvectors 

(X) for a given matrix A. We will learn of some of the applications of eigenvalues and eigenvectors. 

Finally We  will learn how eigenvalues and eigenvectors may be determined numerically. 
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Basic Concepts: 

From an applications viewpoint, eigenvalue problems are probably the most important problems that arise 

in connection with matrix analysis. In this Section we discuss the basic concepts. We shall see that 

eigenvalues and eigenvectors are associated with square matrices of order n × n. If n is small (2 or 3), 

determining eigenvalues is a fairly straightforward process (requiring the solutiuon of a low order 

polynomial equation). Obtaining eigenvectors is a little strange initially and it will help if you read this 

preliminary Section first. 

Determinants : A square matrix possesses an associated determinant. Unlike a matrix, which is an array of 

numbers, a determinant has a single value 

    

Note the minus sign in the second term.  

A matrix such as 

 

in the previous task which has zero determinant is called a singular matrix. The other two matrices A and C 

are non-singular. The key factor to be aware of is as follows:  

Any non-singular n × n matrix C, for which det(C) ≠ 0, possesses an inverse C −1  

i.e. CC−1 = C −1C = I where I denotes the n × n identity matrix  
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A singular matrix does not possess an inverse.    

Systems of linear equations  
We first recall some basic results in linear (matrix) algebra. Consider a system of n equations in n 

unknowns x1, x2, . . . , xn:  

 

 
Basic results in linear algebra  

 

Consider the system of equations CX = K.  

We are concerned with the nature of the solutions (if any) of this system. We shall see that this system only 

exhibits three solution types:  

• The system is consistent and has a unique solution for X  

• The system is consistent and has an infinite number of solutions for X  

• The system is inconsistent and has no solution for X  
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A simple eigenvalue problem:  

 

We shall be interested in simultaneous equations of the form:  

AX = λX,  

where A is an n × n matrix, X is an n × 1 column vector and λ is a scalar (a constant) and, in the first 

instance, we examine some simple examples to gain experience of solving problems of this type.  

For Example: 

 

  

 
 

We have now completed the analysis. We have found values for λ but we also see that we cannot obtain 

unique values for x and y: all we can find is the ratio between these quantities. This behaviour is typical, as 

we shall now see, of an eigenvalue problem.  

2. General eigenvalue problems : 

Consider a given square matrix A. If X is a column vector and λ is a scalar (a number) then the relation.  

                AX=λX                   (4) 

                           

is called an eigenvalue problem. Our purpose is to carry out an analysis of this equation in a manner similar 

to the example above. However, we will attempt a more general approach which will apply to all problems 

of this kind.  

Firstly, we can spot an obvious solution (for X) to these equations. The solution X = 0 is a possibility (for 

then both sides are zero). We will not be interested in these trivial solutions of the eigenvalue problem. Our 

main interest will be in the occurrence of non-trivial solutions for X. These may exist for special values of 

λ, called the eigenvalues of the matrix A. We proceed as in the previous example: take all unknowns to one 

side:    
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 (A − λI)X = 0                      (5) 

where I is a unit matrix with the same dimensions as A. (Note that AX − λX = 0 does not simplify to (A − 

λ)X = 0 as you cannot subtract a scalar λ from a matrix A). This equation (5) is a homogeneous system of 

equations. In the notation of the earlier discussion  C ≡ A − λI and K ≡ 0. For such a system we know that 

non-trivial solutions will only exist if the determinant of the coefficient matrix is zero:  

det(A − λI) = 0                       (6) 

Equation (6) is called the characteristic equation of the eigenvalue problem. We see that the characteristic 

equation only involves one unknown λ. The characteristic equation is generally a polynomial in λ, with 

degree being the same as the order of A (so if A is 2 × 2 the characteristic equation is a quadratic, if A is a 

3 × 3 it is a cubic equation, and so on). For each value of λ that is obtained the corresponding value of X is 

obtained by solving the original equations (4). These X’s are called eigenvectors.    

N.B.  We shall see that eigenvectors are only unique up to a multiplicative factor: i.e. if X satisfies AX = 

λX then so does kX when k is any constant.      

 

Example  

Find the eigenvalues and eigenvectors of the matrix     
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For Example: 
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3.Properties of eigenvalues and eigenvectors:  

 

There are a number of general properties of eigenvalues and eigenvectors which you should be familiar 

with. You will be able to use them as a check on some of your calculations.  

 

 

Property 1: Sum of eigenvalues  
For any square matrix A: sum of eigenvalues = sum of diagonal terms of A (called the trace of A)  

 
Property 3: Linear independence of eigenvectors:  

Eigenvectors of a matrix A corresponding to distinct eigenvalues are linearly independent i.e. one 

eigenvector cannot be written as a linear sum of the other eigenvectors. The proof of this result is omitted 

but we illustrate this property with two examples.  

We saw earlier that the Matrix. 
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Clearly none of these eigenvectors is a constant multiple of any other. Nor is any one obtainable as a linear 

combination of the other two. The three eigenvectors are linearly independent. 
  

  
|D − λI| = (a − λ)(b − λ)(c − λ) = 0  

so again the diagonal elements are the eigenvalues.  

 

We can see that a diagonal matrix is a particularly simple matrix to work with. In addition to the 

eigenvalues being obtainable immediately by inspection it is exceptionally easy to multiply diagonal 

matrices. 

 

Conclusions: 

This paper discusses the conditioning of eigenvalues of  matrices. The simple structure of these matrices 

makes it possible to derive simple expressions and bounds for the individual, global, traditional, and 

structured condition numbers. This led us to discuss several applications, including an inverse eigenvalue 

problem. These applications are very promising and will be investigated in more detail in forthcoming 

work.  
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