Intuitionistic (S,T)-Fuzzy H_{ν} -Ideals and their Characterizations

Manoj Kumar Dewangan M M College of Technology Raipur Chhattisgarh

Abstract: In this paper, we apply the concept of intuitionistic fuzzy set to H_{ν} -rings. The notion of an intuitionistic (S, T)-fuzzy H_{ν} -ideals of an H_{ν} -ring is introduced and some related properties are investigated.

Keywords: H_{ν} -ring, H_{ν} -ideal, fuzzy H_{ν} -ring, fuzzy H_{ν} -ideal, intuitionistic (S, T)- fuzzy H_{ν} -ideal.

Mathematics Subject Classification: 20N20

1. Introduction

The concept of hyperstructure was introduced in 1934 by Marty [12]. Hyperstructures have many applications to several branches of pure and applied sciences. Vougiouklis [14] introduced the notion of H_{ν} -structures, and Davvaz [5] surveyed the theory of H_{ν} -structures. After the introduction of fuzzy sets by Zadeh [16], there have been a number of generalizations of this fundamental concept. The notion of intuitionistic fuzzy sets introduced by Atanassov [1] is one among them. For more details on intuitionistic fuzzy sets, we refer the reader to [2, 3].

In [4] Biswas applied the concept of intuitoinistic fuzzy sets to the theory of groups and studied intuitionistic fuzzy subgroups of a group. In [10] Kim et al. introduced the notion of fuzzy subquasigroups of a quasigroup. In [11] Kim and Jun introduced the concept of fuzzy ideals of a semigroup. Zhan et al. [17] introduced the notion of an intuitionistic (S, T)-fuzzy H_{ν} -submodule of an H_{ν} -module. This paper continues this line of research for fuzzy H_{ν} -ideal of H_{ν} -ring. In this paper, the notion of an intuitionistic (S, T)-fuzzy H_{ν} -ideal of an H_{ν} -ring is

introduced and some related properties are investigated.

The paper is organized as follows: in section 2 some fundamental definitions on H_{ν} -structures and fuzzy sets are explored, in section 3 we define intuitionistic (S, T)-fuzzy H_{ν} -ideals and establish some useful theorems.

2. Basic Definitions

We first give some basic definitions for proving the further results.

Definition 2.1 [6] Let X be a non-empty set. A mapping $\mu: X \to [0,1]$ is called a fuzzy set in X. The complement of μ , denoted by μ^c , is the fuzzy set in X given by

$$\mu^{c}(x) = 1 - \mu(x) \quad \forall x \in X.$$

Definition 2.2 [6] Let f be a mapping from a set X to a set Y. Let μ be a fuzzy set in X and λ be a fuzzy set in Y. Then the inverse image $f^{-1}(\lambda)$ of λ is a fuzzy set in X defined by

$$f^{-1}(\lambda)(x) = \lambda(f(x)) \quad \forall x \in X.$$

The image $f(\mu)$ of μ is the fuzzy set in Y defined by

$$f(\mu)(y) = \begin{cases} \sup_{x \in f^{-1}(y)} \mu(x), & f^{-1}(y) \neq \emptyset \\ 0, & \text{otherwise} \end{cases}$$

For all $y \in Y$.

Definition 2.3 [6] An intuitionistic fuzzy set A in a non-empty set X is an object having the form $A = \{(x, \mu_A(x), \lambda_A(x)) : x \in X\}$, where the functions $\mu_A : X \to [0, 1]$ and $\lambda_A : X \to [0, 1]$ denote the degree of membership and degree of non membership of each element $x \in X$ to the set A respectively and $0 \le \mu_A(x) + \lambda_A(x) \le 1$ for all $x \in X$. We shall use the symbol $A = \{\mu_A, \lambda_A\}$ for the intuitionistic fuzzy set $A = \{(x, \mu_A(x), \lambda_A(x)) : x \in X\}.$

Definition 2.4 [6] Let $A = \{\mu_A, \lambda_A\}$ and $B = \{\mu_B, \lambda_B\}$ be intuitionistic fuzzy sets in X. Then

- (1) $A \subseteq B \Leftrightarrow \mu_A(x) \le \mu_B(x)$ and $\lambda_A(x) \le \lambda_B(x)$,
- (2) $A^c = \{(x, \lambda_A(x), \mu_A(x)) : x \in X\}$

$$(3) A \cap B = \begin{cases} (x, \min\{\mu_A(x), \mu_B(x)\}, \\ \max\{\lambda_A(x), \lambda_B(x)\} : x \in X \end{cases},$$

$$(4) A \cup B = \begin{cases} (x, \max\{\mu_A(x), \mu_B(x)\}, \\ \min\{\lambda_A(x), \lambda_B(x)\} : x \in X \end{cases},$$

$$(4) A \cup B = \begin{cases} (x, \max\{\mu_A(x), \mu_B(x)\}, \\ \min\{\lambda_A(x), \lambda_B(x)\} : x \in X \end{cases},$$

$$(5) \Box A = \{(x, \mu_A(x), \mu_A^c(x)) : x \in X\},\$$

$$(6) \Diamond A = \{(x, \lambda_A^c(x), \lambda_A(x)) : x \in X\}.$$

Definition 2.5 [15] Let G be a non-empty set and $*: G \times G \to \wp^*(G)$ be a hyperoperation, where $\wp^*(G)$ is the set of all the non-empty subsets of G. Where $A*B = \bigcup_{a \in A, b \in B} a*b, \forall A, B \subseteq G$.

The * is called weak commutative if $x * y \cap y * x \neq \emptyset$, $\forall x, y \in G$.

The * is called weak associative if $(x * y) * z \cap x * (y * z) \neq \phi$, $\forall x, y, z \in G$.

A hyperstructure (G, *) is called an H_{ν} -group if

- (i) * is weak associative.
- (ii) a * G = G * a = G, $\forall a \in G$ (Reproduction axiom).

Definition 2.6 [7] Let G be a hypergroup (or H_{ν} -group) and let μ be a fuzzy subset of G. Then μ is said to be a fuzzy subhypergroup (or fuzzy H_{ν} -subgroup) of G if the following axioms hold:

(i) $\min\{\mu(x), \mu(y)\} \le \inf_{\alpha \in x^*y} \{\mu(\alpha)\}, \quad \forall x, y \in G \ (ii) \ \text{For all} \ x, a \in G \ \text{there exists} \ y \in G \ \text{such that} \ x \in a * y \ \text{and}$ $\min\{\mu(a), \mu(x)\} \le \{\mu(y)\}.$

Definition 2.7 [13] Let G be a hypergroup (or H_{ν} -group). An intuitionistic fuzzy set $A = \{\mu_{A}, \lambda_{A}\}$ of G is called intuitionistic fuzzy subhypergroup (or intuitionistic fuzzy H_{ν} -subgroup) of G if the following axioms hold:

- (i) $\min\{\mu_A(x), \mu_A(y)\} \le \inf_{\alpha \in \mathbb{R}^n} \{\mu_A(\alpha)\}, \quad \forall x, y \in G.$
- (ii) For all $x, a \in G$ there exists $y \in G$ such that $x \in a * y$ and $\min\{\mu_A(a), \mu_A(x)\} \le \{\mu_A(y)\}$.
- (iii) $\sup \{\lambda_A(\alpha)\} \le \max \{\lambda_A(x), \lambda_A(y)\}, \forall x, y \in G.$
- (iv) For all $x, a \in G$ there exists $y \in G$ such that $x \in a * y$ and $\{\lambda_A(y)\} \le \max\{\lambda_A(a), \lambda_A(x)\}$.

Definition 2.8 [15] An H_{ν}-ring is a system $(R, +, \cdot)$ with two hyperoperations satisfying the ring-like axioms:

(i) $(R,+,\cdot)$ is an H_{ν} -group, that is,

$$((x+y)+z)\cap(x+(y+z))\neq\phi\quad\forall x,y\in R,$$

 $a + R = R + a = R \quad \forall a \in R;$

- (ii) (R,\cdot) is an H_{ν} -semigroup;
- (iii) (·) is weak distributive with respect to (+), that is, for all $x, y, z \in R$,

$$(x \cdot (y+z)) \cap (x \cdot y + x \cdot z) \neq \phi,$$

$$((x+y) \cdot z) \cap (x \cdot z + y \cdot z) \neq \phi.$$

Definition 2.9 [9] Let R be an H_{ν} -ring. A nonempty subset I of R is called a left (resp., right) H_{ν} -ideal if the following axioms hold:

- (i) (I,+) is an H_{ν} -subgroup of (R,+),
- (ii) $R \cdot I \subseteq I$ (resp., $I \cdot R \subseteq I$).

Definition 2.10 [9] Let $(R,+,\cdot)$ be an H_{ν} -ring and μ a fuzzy subset of R. Then μ is said to be a left (resp., right) fuzzy H_{ν} -ideal of R if the following axioms hold:

$$(1) \min\{\mu(x), \mu(y)\} \le \inf\{\mu(z) : z \in x + y\}$$
$$\forall x, y \in R,$$

- (2) For all $x, a \in R$ there exists $y \in R$ such that $x \in a + y$ and $\min\{\mu(a), \mu(x)\} \le \mu(y)$,
- (3) For all $x, a \in R$ there exists $z \in R$ such that $x \in z + a$ and $\min\{\mu(a), \mu(x)\} \le \mu(z)$,

$$(4)\mu(y) \le \inf\{\mu(z): z \in x \cdot y\}$$
 [respectively $\mu(x) \le \inf\{\mu(z): z \in x \cdot y\} \quad \forall x, y \in R$].

Definition 2.11 [9] An intuitionistic fuzzy set $A = \{\mu_A, \lambda_A\}$ in R is called a left (resp., right) intuitionistic fuzzy H_V -ideal of R if

$$(1) \min\{\mu_A(x), \mu_A(y)\} \le \inf\{\mu_A(z) : z \in x + y\}$$

$$\max\{\lambda_A(x), \mu_A(y)\} \ge \sup\{\lambda_A(z) : z \in x + y\}$$

$$\forall x, y \in R;$$

- (2) For all $x, a \in R$ there exists $y \in R$ such that $x \in a + y$ and $\min\{\mu_A(a), \mu_A(x)\} \le \mu_A(y)$ and $\max\{\lambda_A(a), \lambda_A(x)\} \ge \lambda_A(y)$;
- (3) For all $x, a \in R$ there exists $z \in R$ such that $x \in z + a$ and $\min\{\mu_A(a), \mu_A(x)\} \le \mu_A(z)$ and $\max\{\lambda_A(a), \lambda_A(x)\} \ge \lambda_A(z)$;

$$(4)\mu_{A}(y) \leq \inf\{\mu_{A}(z) : z \in x \cdot y\} \text{ [respectively } \mu_{A}(x) \leq \inf\{\mu_{A}(z) : z \in x \cdot y\} \quad \forall x, y \in R \text{]}$$
 and
$$\lambda_{A}(y) \geq \sup\{\lambda_{A}(z) : z \in x \cdot y\} \text{ [respectively } \lambda_{A}(x) \geq \sup\{\lambda_{A}(z) : z \in x \cdot y\} \quad \forall x, y \in R \text{]}.$$

Definition 2.12 [17] By a t-norm T, we mean a function $T:[0,1]\times[0,1]\to[0,1]$ satisfying the following conditions:

$$(i)T(x,1) = x,$$

$$(ii)T(x,y) \le T(x,z) \quad \text{if } y \le z,$$

$$(iii)T(x,y) = T(y,x),$$

$$(iv)T(x,T(y,z)) = T(T(x,y),z)$$
For all $x, y, z \in [0,1]$.

Definition 2.13 [17] By a *s*-norm *S*, we mean a function $S:[0,1]\times[0,1]\to[0,1]$ satisfying the following conditions:

$$(i) S(x,0) = x,$$

$$(ii)S(x,y) \le S(x,z)$$
 if $y \le z$,

$$(iii)S(x,y) = S(y,x),$$

$$(iv)S(x,S(y,z))=S(S(x,y),z)$$

For all $x, y, z \in [0,1]$.

It is clear that

 $T(\alpha, \beta) \le \min\{\alpha, \beta\} \le \max\{\alpha, \beta\} \le S(\alpha, \beta)$ For all $\alpha, \beta \in [0, 1]$.

3. Intuitionistic (S, T)-fuzzy H_{ν} -ideal

In this section we give the definition of intuitionistic (S, T)-fuzzy H_{ν} -ideal and prove some related results.

Definition 3.1 Let R be a H_{ν} -ring. An intuitionistic fuzzy set $A = \{\mu_A, \lambda_A\}$ of R is called intuitionistic (S, T)-fuzzy H_{ν} -ideal of R if the following axioms hold:

 $(1)T\{\mu_{A}(x), \mu_{A}(y)\} \le \inf\{\mu_{A}(z) : z \in x + y\}$

 $S\{\lambda_A(x), \mu_A(y)\} \ge \sup\{\lambda_A(z): z \in x+y\}$ (2) For all $x, a \in R$ there exists $y \in R$ such that $x \in a+y$ and $\forall x, y \in R$;

 $T\{\mu_{A}(a), \mu_{A}(x)\} \leq \mu_{A}(y) \text{ and } S\{\lambda_{A}(a), \lambda_{A}(x)\} \geq \lambda_{A}(y); \qquad (3) \text{ For all } x, a \in R \text{ there exists } z \in R \text{ such that } x \in z + a \text{ and } T\{\mu_{A}(a), \mu_{A}(x)\} \leq \mu_{A}(z) \text{ and } S\{\lambda_{A}(a), \lambda_{A}(x)\} \geq \lambda_{A}(z); \\ (4)\mu_{A}(y) \leq \inf\{\mu_{A}(z): z \in x \cdot y\} \text{ [respectively } \mu_{A}(x) \leq \inf\{\mu_{A}(z): z \in x \cdot y\} \quad \forall x, y \in R \text{]} \\ \lambda_{A}(y) \geq \sup\{\lambda_{A}(z): z \in x \cdot y\} \text{ [respectively } \lambda_{A}(x) \geq \sup\{\lambda_{A}(z): z \in x \cdot y\} \quad \forall x, y \in R \text{]}.$

Definition 3.2 The norms T and S are called dual if for all $a,b \in [0,1]$, $\overline{T(a,b)} = S(\overline{a},\overline{b})$. **Lemma 3.3** Let T and S be dual norms. If $A = \{\mu_A, \lambda_A\}$ is an intuitionistic (S,T)-fuzzy H_V -ideal of R, then so is $\Box A = \{\mu_A, \mu_A^c\}$.

Proof It is sufficient to show that μ_A^c satisfies the conditions of Definition 3.1.

For
$$x, y \in R$$
 we have $T\{\mu_A(x), \mu_A(y)\} \le \inf\{\mu_A(z) : z \in x + y\}$ and so $T\{1-\mu_A^c(x), 1-\mu_A^c(y)\} \le \inf\{1-\mu_A^c(z) : z \in x + y\}$

Hence
$$T\{1-\mu_A^c(x), 1-\mu_A^c(y)\} \le 1-\sup\{\mu_A^c(z): z \in x+y\}$$

Which implies $\sup \{ \mu_A^c(z) : z \in x + y \} \le 1 - T \{ 1 - \mu_A^c(x), 1 - \mu_A^c(y) \}$

Since T and S are dual. Therefore $\sup \{\mu_A^c(z): z \in x + y\} \le S\{\mu_A^c(x), \mu_A^c(y)\}$

Now, let $a, x \in R$. Then there exists $y \in R$ such that $x \in a + y$ and $T\{\mu_A(a), \mu_A(x)\} \le \{\mu_A(y)\}$

It follows that

$$T\left\{1-\mu_{A}^{c}(a),1-\mu_{A}^{c}(x)\right\} \leq \left\{1-\mu_{A}^{c}(y)\right\} \mu_{A}^{c}(y) \leq 1-T\left\{1-\mu_{A}^{c}(a),1-\mu_{A}^{c}(x)\right\} = S\left\{\mu_{A}^{c}(a),\mu_{A}^{c}(x)\right\}$$

So that

$$\{\mu_A^c(y)\} \leq S\{\mu_A^c(a), \mu_A^c(x)\}$$

Similarly, let $a, x \in R$ then there exists $z \in R$ such that $x \in z + a$ and $\{\mu_A^c(z)\} \le S\{\mu_A^c(a), \mu_A^c(x)\}$

Now, let $x, y \in R$, we have $\mu_A(y) \le \inf\{\mu_A(z) : z \in x \cdot y\}$ since μ_A is a T fuzzy H_v -ideal of R. Hence $1 - \mu_A^c(y) \le \inf\{1 - \mu_A^c(z) : z \in x \cdot y\}$ which implies $\sup\{\mu_A^c(z) : z \in x \cdot y\} \le \mu_A^c(y)$. Therefore $\square A = \{\mu_A, \mu_A^c\}$ is an intuitionistic (S, T)-fuzzy H_v -ideal of R

Lemma 3.4 Let T and S be dual norms. If $A = \{\mu_A, \lambda_A\}$ is an intuitionistic (S, T)-fuzzy H_v -ideal of R, then so is $\Diamond A = \{\lambda_A^c, \lambda_A\}$.

Proof The proof is similar to the proof of Theorem 3.2.

Combining the above two lemmas it is not difficult to verify that the following theorem is valid.

Theorem 3.5 Let T and S be dual norms. Then $A = \{\mu_A, \lambda_A\}$ is an intuitionistic (S, T) - fuzzy H_V -ideal of R if and only if $\Box A$ and $\Diamond A$ are intuitionistic (S, T) - fuzzy H_V -ideal of R

Corollary 3.6 Let T and S be dual norms. Then $A = \{\mu_A, \lambda_A\}$ is an intuitionistic (S, T) - fuzzy H_v -ideal of R if and only if μ_A and λ_A^c are intuitionistic (S, T) -fuzzy H_v -ideal of R

Definition 3.7 For any $t \in [0,1]$ and a fuzzy set μ in R the set $U(\mu;t) = \{x \in R : \mu(x) \ge t\}$ $L(\mu;t) = \{x \in R : \mu(x) \le t\}$

is called an upper (respectively, lower) t-level cut of μ .

Definition 3.8 An intuitionistic (S, T)-fuzzy H_v -ideal $A = \{\mu_A, \lambda_A\}$ of R is said to be imaginable if μ_A and λ_A satisfy the imaginable property.

The following are obvious.

Lemma 3.9 Every imaginable intuitionistic (S, T) - fuzzy H_v -ideal of R is intuitionistic fuzzy H_v -ideal.

Lemma 3.10 [8] A fuzzy set μ in R is a fuzzy H_{ν} -ideal of R if and only if the non empty set $U(\mu;t), t \in [0,1]$ is an H_{ν} -ideal of R

Lemma 3.11 [8] A fuzzy set μ in R is a fuzzy H_{ν} -ideal of R if and only if the non empty set μ^{c} is an antifuzzy H_{ν} -ideal of R

By the above Lemmas, we can give the following results.

Theorem 3.12 If $A = \{\mu_A, \lambda_A\}$ is an imaginable intuitionistic fuzzy set in R Then $A = \{\mu_A, \lambda_A\}$ is an intuitionistic (S, T)- fuzzy H_v -ideal of R if and only if the non-empty sets $U(\mu_A; t)$ and $L(\lambda_A; t)$ are H_v -ideal of R for every $t \in [0,1]$.

Theorem 3.13 If $A = \{\mu_A, \lambda_A\}$ is an intuitionistic (S, T)-fuzzy H_v -ideal of R then $\mu_A(x) = \sup\{\alpha \in [0,1]: x \in U(\mu_A; \alpha)\}$ And $\lambda_A(x) = \inf\{\alpha \in [0,1]: x \in L(\lambda_A; \alpha)\}$ For all $x \in R$.

Definition 3.14 Let $f: R \to R'$ be a strong epimorphism of H_v -rings. If $A = \{\mu_A, \lambda_A\}$ is an intuitionistic fuzzy set in R', then the inverse image of A under f, denoted by $f^{-1}(A)$, is an intuitionistic fuzzy set in R defined by $f^{-1}(A) = (f^{-1}(\mu_A), f^{-1}(\lambda_A))$.

By the above Definition, we can give the following result.

IJCR

Theorem 3.15 Let $f: R \to R'$ be a strong epimorphism of H_v -ring. If $A = \{\mu_A, \lambda_A\}$ is an intuitionistic (S, T)-fuzzy H_v -ideal of R'. Then the inverse image $f^{-1}(A) = (f^{-1}(\mu_A), f^{-1}(\lambda_A))$ of A under f is an intuitionistic (S, T)-fuzzy H_v -ideal of R

Definition 3.16 A fuzzy set μ in a set X is said to have sup property if for every non-empty subset S of X, there exists $x_0 \in S$ such that

$$\mu(x_0) = \sup_{x \in S} \left\{ \mu(x) \right\}$$

Proposition 3.17 Let R and R' be two H_v -rings and $f: R \to R'$ be a surjection. If $A = \{\mu_A, \lambda_A\}$ is an intuitionistic (S, T)-fuzzy H_v -ideal of R such that μ_A and λ_A have sup property, then

$$(i) f(U(\mu_A;t)) = U(f(\mu_A);t);$$

$$(ii) f(L(\lambda_A;t)) \supseteq L(f(\lambda_A);t).$$

Proof

$$(i) y \in f(U(\mu_{A};t)) \Leftrightarrow f(\mu_{A})(y) \geq t$$

$$\Leftrightarrow \sup_{x \in f^{-1}(y)} \{\mu_{A}(x)\} \geq t$$

$$\Leftrightarrow \exists x_{0} \in f^{-1}(y), \mu_{A}(x_{0}) \geq t$$

$$\Leftrightarrow \exists x_{0} \in f^{-1}(y), x_{0} \in U(\mu_{A};t)$$

$$\Leftrightarrow f(x_{0}) = y, x_{0} \in U(\mu_{A};t)$$

$$\Leftrightarrow y \in f(U(\mu_{A};t))$$

Proposition 3.18 Let R and R' be two H_v -rings and $f: R \to R'$ be a map. If $B = \{\mu_B, \lambda_B\}$ is an intuitionistic (S, T)-fuzzy H_v -ideal of R' then

$$(i) f^{-1}(U(\mu_B;t)) = U(f^{-1}(\mu_B);t);$$

$$(ii) f^{-1} \left(L(\lambda_B; t) \right) = L(f^{-1}(\lambda_B); t).$$

For every $t \in [0,1]$.

Proof

$$(i) x \in U (f^{-1}(\mu_B);t) \Leftrightarrow f^{-1}(\mu_B)(x) \geq t$$

$$\Leftrightarrow \mu_B (f(x)) \geq t$$

$$\Leftrightarrow f(x) \in U (\mu_B;t)$$

$$\Leftrightarrow x \in f^{-1} (U (\mu_B;t))$$

$$(ii) x \in L (f^{-1}(\lambda_B);t) \Leftrightarrow f^{-1}(\lambda_B)(x) \leq t$$

$$\Leftrightarrow \lambda_B (f(x)) \leq t$$

$$\Leftrightarrow f(x) \in L(\lambda_B;t)$$

$$\Leftrightarrow x \in f^{-1} (L(\lambda_B;t))$$

References

- [1] Atanassov K.T., Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986) 87-96.
- [2] Atanassov K. T., Intuitionistic fuzzy sets: Theory and Applications, Studies in fuzziness and soft computing, 35, Heidelberg, New York, Physica-Verl., 1999.
- [3] Atanassov K. T., New operations defined over the intuitionistic fuzzy sets, Fuzzy Sets and Systems 61, (1994) 137-142.
- [4] Biswas R., Intuitionistic fuzzy subgroups, Math. Forum 10 (1989) 37-46.
- [5] Davvaz B., A brief survey of the theory of H_v-structures, in: Proceedings of the 8th International Congress on AHA, Greece 2002, Spanids Press, (2003) 39-70.
- [6] Davvaz B., Dudek W. A., Jun Y. B., Intuitionistic fuzzy H_v-submodules, Inform. Sci. 176 (2006) 285-300.
- [7] Davvaz B., Fuzzy H_{ν} -groups, Fuzzy Sets and Systems 101 (1999) 191-195.
- [8] Davvaz B., Fuzzy H_v-submodules, Fuzzy Sets and Systems 117 (2001) 477-484.
- [9] Davvaz B., Dudek W. A., Intuitionistic fuzzy H_{ν} —ideals, International Journal of Mathematics and Mathematical Sciences, 2006, 1-11.
- [10] Kim K. H., Dudek W. A., Jun Y. B., On intuitionistic fuzzy subquasigroups of quasigroups, Quasigroups Relat Syst 7 (2000) 15-28.
- [11] Kim K. H., Jun Y. B., Intuitionistic fuzzy ideals of semigroups, Indian J. Pure Appl. Math. 33 (4) (2002) 443-449.
- [12] Marty F., Sur une generalization de la notion de group, in: 8th congress Math. Skandenaves, Stockhole, (1934) 45-49.
- [13] Sinha A. K., Dewangan M. K., Intuitionistic Fuzzy H_ν-subgroups, International Journal of Advanced Engineering Research and Science 3 (2014) 30-37.
- [14] Vougiouklis T., A new class of hyperstructures, J. Combin. Inf. System Sci., to appear.
- [15] Vougiouklis T., Hyperstructures and their representations, Hadronic Press, Florida, 1994.
- [16] Zadeh L. A., Fuzzy sets, Inform. And Control 8 (1965) 338-353.
- [17] Zhan J., Davvaz B., Corsini P., Intuitionistic (S, T)-fuzzy hyperquasigroups, Soft Comput 12 (2008) 1229-1238.