
www.ijcrt.org © 2016 IJCRT | Volume 4, Issue 1 November 2016 | ISSN: 2320-2882

IJCRT1133462 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 114

An exploratory study of DevOps and it's future in the

United States
Sikender Mohsienuddin Mohammad

KPMG LLP, Sr. Associate & Information Technology, Wilmington University

419 V street, Apt D, Sacramento, CA 95818

Abstract—This document will explore Deposits building blocks,

and its future in the U.S. Every organization is a software

company nowadays, and large companies are keen to take over

huge segments of the economy. This is a coordinated approach

that would not only eradicate the endless series of concurrent

activities but also maintain an effective implementation process

in the life cycle of software development (SDLC). Currently, a

very organized approach is called DevOps and is characterized

by fewer errors, more efficiency, and remarkable coordination.

With so much written about DevOps, it's easy to forget that it's

still in its early stages of maturity. But it is expected to grow well

beyond its current status over the next few years. Technologists

have made great strides to benefit from it ever since the DevOps

ideation. Notwithstanding advancements and the progress teams

have seen in pockets, many of the core problems still prevail:

scaling across the organization due to manual processes,

inadequate coordination across dev and ops teams, and

overlapping tools that hinder agility. Fortunately, there are

hopes in the future especially for organizations hoping to get the

most out of DevOps. Software engineers now can continue to

increase their knowledge to be ready for the next DevOps stage,

through growth, delivery, and quality assurance. At the same

time, all team leaders need to be prepared to handle some major

challenges. Over the years, DevOps has begun to evolve and gain

recognition. This trend has picked up the exponential pace with

the advent of mobile phones. Today, the DevOps cycle continues

to thrive on the principles of enhanced teamwork and automation

to create, test, and release apps faster. DevOps will continue to

be seen clearly in the U.S., in which continuous updates are

transforming the way software is delivered to a near-limitless

market. In this intensely competitive world of technology,

DevOps has now become a must for economic development.

DevOps has been a primary feature and influenced the tech

landscape and many analysts expect that DevOps will become the

standard and will hit its peak this year. To make DevOps work

and to promote agility over the next ten years, the trick is pretty

simple: Have the right team together at the right moment.

Keywords — DevOps, Building Blocks of DevOps, Future of

DevOps in the U.S., DevOps trends, DevSecOps.

I. INTRODUCTION

While companies have different meanings of DevOps, we can

identify DevOps as a way of thinking that a team takes to bring

their engineering dynamics to new levels. DevOps is mainly

concerned with eliminating technical barriers and mainly cultural

barriers between concept and implementation, thereby allowing

the software process to be enhanced, quicker, cheaper, and more

efficient [1]. Whatever it might be called, it all will end up with

automation, which in effect will allow businesses to easily grow,

ship quickly, fail easily, recover swiftly, and adapt fast. Through

the SDLC model to the present, things have greatly changed [2].

DevOps had been introduced in 2009, advocating a societal

transition and other technical concepts where everything was

viewed as code. The principles like CI / CD were then given a lot

of limelight, but the software was written as a great monolith and

there were many challenges [3]. Thus, in 2011 the architecture of

microservices was introduced, this architecture of microservices

promoted fine-grained and loosely coupled components with a

special mission. The applications written after this loosely

interconnected cloud-based architecture have been called cloud-

native. Many companies have moved from VMs to Kubernetes to

Serverless, based on their business needs and objectives.

Building mobile app software needs a lot of computer

programming [4]. Companies now have to provide users with

unique, high-quality software so that they stay competitive in the

technology market as much as possible [4].

The companies will concentrate on two key factors in this

new approach: resilience and adaptability. The former describes

the ability to code and recode, while the other defines the ability

of DevOps to have changed along the SDLC [5]. Companies are

actively working to integrate these attributes into their workflows

to facilitate DevOps principles of continuous delivery,

continuous integration, and sorting out glitches to enable users to

benefit from an inconvenient software experience [6]. Despite

large investments in the implementation of DevOps, most

companies have made progress only on improvements and

downstream applications [7]. Too often, developers have to log in,

create requests for change, and manually complete forms – a

frustrating, needless, and overall process. The reality is that

DevOps manual operations literally cannot survive over the next

decade. But the trend begins as companies try to automate

activities such as change management by using complex controls

via data and policy automation to achieve complete CI / CD. As

automation becomes increasingly popular, developers can spend

more time creating and delivering apps faster and more

effectively. The main focus of this study is to explore DevOps in

detail and it's future in the United States.

http://www.ijcrt.org/

www.ijcrt.org © 2016 IJCRT | Volume 4, Issue 1 November 2016 | ISSN: 2320-2882

IJCRT1133462 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 115

II. LITERATURE REVIEW

A. Building blocks of DevOps

According to Hüttermann, the DevOps framework to

continuous software creation and deployment (also referred to as

continuous software delivery) has made the IT world grow faster.

This has become a valuable advantage for IT leaders and CIOs to

identify key building blocks that are critical for a productive

DevOps operation [8]. It is an approach that incorporates cultural

values, organizational improvements, and the introduction of new

technologies and practices. The main building blocks of DevOps

are as follows:

1.) Total management of small teams

Code production historically involved several closely

related teams, which depend on each other to complete their tasks.

Processing time became an immense issue as people became

potential bottlenecks. According to Kim et al., DevOps strategic

choices promote software engineers who manage minor

functionalities and own the entire chain from Dev to Ops [8].

This is because over-specialization leads to numerous handoffs

and lines that lead to longer lead times. It does not mean that

highly skilled engineers are outdated. On the contrary,

technology is becoming more advanced and we need more skills

than ever before. According to Gill et al., organizations must

promote professional learning and growth to enable their

personnel to become rounded experts [9].

2.) Automated continuous feedback checks

In IT, bad results are typically triggered by a lack of

quick feedback. For software engineers working on waterfall

projects, the techniques used before Agile were not uncommon

in developing code before it was sent to QA testing. Having test

findings late in the game means that developers can have worked

on flawed code for a whole year without understanding it. It's

not simple to find the root of the problem and repair it one year

afterward. Nybom et al. mention that QA testing is at the core of

DevOps to address these issues. It seeks to provide rapid

feedback loops when work is done so that the development team

can correct errors as and when they occur [11]. This means that

developers must be able to carry out their experiments instead of

relying on a different team. This can be accomplished by

automated tests, which automatically identify problems, so that

they can be fixed before further research is done and so that the

developers do not replicate the same mistake. The bigger the

device, the more improvements are checked or put into service,

the easier it is to figure out where the problem comes from [11].

3.) Loosely Coupled Architectures

System adjustments or upgrades need close

communication with everyone else working on the program and

can, therefore, be affected. This leads to a dynamic cycle of

change management. Gregory et al mention that minor changes

in closely connected architectures can result in major errors [12].

But even then, once the technology is ready for development,

new technology has already been added by other classes. This

means that one will eventually release the code into a different

device from the one checked. The bigger the device, the more

improvements are checked or put into service, the easier it is to

figure out where the problem comes from. According to Laan,

any transition, regardless of how small, is an extremely

frustrating risk in managing [13].

A DevOps-oriented architecture helps small teams to

easily and rapidly develop, test, and deploy code to improve

efficiency and performance. This is facilitated by loosely

connected service-oriented architectures (SOA). The loose link

ensures that components (or services) are enclosed into

containers and are not influenced by changes around them — all

they need is in the container. Bell et al. suggest that strictly

communicating through application programming interfaces

(APIs) does not share database structures or schemas [14]. The

result: a small environment with well-defined interfaces that

promote versatility and scalability even in large companies with

thousands of developers who constantly deploy code to the same

framework.

4.) Telemetry for reviews on production applications

When a code is in development, things will go

wrong and there can be no way to solve it. To fix it, one needs to

first define the cause, and data is needed to do so. Software

developers would normally rebuild servers one by one in the

past before the problem was solved [15]. Although that sounds

nuts, particularly when it comes to mission-critical applications,

that was the quickest way to get the systems up and running

again. According to Bell et al. reporting and tracking systems

were not as advanced, and IT had no telemetry (i.e. data) required

for it to rapidly reach the source [15]. Rebooting was the fastest

way to restore infrastructure, so it was. Currently, things have

changed drastically. New tools to track, monitor, and warn help

IT identify contributing factors and recognize problems early,

preferably before customers are affected [16]. Such systems

collect and submit measurements and metrics constantly and

automatically to a tracking tool. When an anomaly occurs, the

program warns IT to allow it to be investigated. IT will check

with enough data points that the systems are working properly

and flag when an issue arises such that corrections can be made

immediately. DevOps is a crucial component of setting up these

instruments and visualizing telemetry across dashboards for the

entire team.

5.) Organizational continuous learning

While the goal is to identify problems before they are

deployed, errors may slip. This is why developers need to be able

to identify problems themselves, fix them, and share the lessons

learned within the company. Smeds et al. suggest that for this to

occur, one needs to build a learning mechanism where failures

and mitigating measures are detected and made available in the

IT department to become a resilient organization [16].

6.) DevSecOps: Security building in the DevOps approach

Security is a crucial factor that was initially overlooked

when DevOps was introduced. The DevSecOps movement

corrects it by applying the DevOps methodology and

incorporating protection into the everyday work of developers

and operations. Sacks state that a typical personal relationship

between production, operations, and InfoSec are approximately

100:10:1[17]. When code is considered ready for use by dev and

ops, InfoSec verifies it. When a problem is found – as it is always

– work is returned for rework. The process of sending back and

forth research is inefficient, costly, and causes friction between

teams. To solve this, DevOps needs the same strategy. DevOps

ensures operating specifications are implemented from day one.

The same has to be done for protection needs — this is the core

of DevSecOps. DevOps is expanded to include security through

automation and incorporation into production and operations by

automated InfoSec tests, which will be performed along with all

other automated operating tests. Also, InfoSec and developers

work early on to ensure that safety and enforcement goals are

achieved [17].

Four considerations are significant when competing

with the elite of the DevOps industry.

i. Lead time

ii. Frequency of release

iii. Time for recovery

iv. Change rate shift

http://www.ijcrt.org/

www.ijcrt.org © 2016 IJCRT | Volume 4, Issue 1 November 2016 | ISSN: 2320-2882

IJCRT1133462 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 116

III. TABLE I

DevOps Performance Metrics

 Elite High Medium Low

Lead time

for

changes

<1 day 1 day-1

week

1week-

1month

1month-

6months

Release

frequency

On-

demand

(>1 daily)

one daily-

one

monthly

one

weekly-

one

monthly

once

monthly-

once every

six months

Time to

recovery

<1 hour <24 hours <24 hours 7 days-1

month

Change

failure rate

0 to 15

percent

0 to15

percent

0 to 15

percent

46 to 60

percent

Fig i: DevOps Performance Metrics

IV. FUTURE OF DEVOPS IN THE U.S

There have been waves in the IT industry in the emergence of

AI and automation, and DevOps is no exception. DevOps in the

U.S has big potential projections. AI and automation will

transform the development process of applications in the coming

years. Apps will be automatically composed and coded. The AI,

data, and machine learning will determine tasks such as

integration, stability, testing, and deployment in all-new AI Ops.

A data-driven approach will allow software, similar to other AI-

driven technologies such as Apple's Siri and Alexa, to

dynamically adjust its behaviours to its environment [18].

Besides, this critical change from programmed to non-

programmed systems will require better security and

development management and developers will be able to

concentrate on value-added activities.

V. PRACTICAL STEPS THE UNITED STATES NEED TO TAKE IN

THE FUTURE

The main focus for transformation into fully developed

DevOps starts with the identification of the most troublesome

and typical bottlenecks and the creation of a strategy with

budgets, owners, and metrics. If the number of errors escaped

into production is identified, the significance of this

transformation is also conspicuous. This can then be replicated in

other bottlenecks or areas which can be changed. Reducing

challenges – and the desire to overcome them – will also lead

towards greater tolerance by team leaders who can resist change

[19]. For example, people who have been in the industry for

many years may find it challenging to let go of the manual

system, but to integrate them into a collaborative approach where

data and perspectives help enhance the work-life tangibly.

VI. QA TEST

Fig ii: Unit tests play of software

The United States may have to recognize developing new

competencies in DevSecOps, DevQualOps, and perhaps

DevAPMOps (integrating APM activities into the build cycle).

New technologies would also create new software development

criteria beyond those listed above – 5 G and IoT apps, for

example. The tech of the future changes rapidly and DevOps

evolves quickly. These are exciting times, but management needs

to concentrate on training teams in tools and expertise to take

advantage of the opportunities available [19]. Likewise, each

team member must accept this new environment and the

opportunity for personal growth.

VII. SIGNIFICANCE OF THIS RESEARCH TO THE UNITED

STATES

This research is vital to the United States in knowing its

progress on DevOps implementation and what it needs to do to

make sure that it is not left behind. The U.S. will gain more

knowledge on some of the developing competencies that it must

fully implement to meet the demands of the software

development that can compete in the technological market. New

competences in DevSecOps, DevQualOps, and perhaps

DevAPMOps needs to be integrated into APM activities into its

already the build DevOps cycle. Many companies are still

lagging behind and therefore should build and make changes to

their systems to improve the services that they provide using their

technologies.

System Testing

Acceptance testing

Unit Testing

Integration Testing

http://www.ijcrt.org/

www.ijcrt.org © 2016 IJCRT | Volume 4, Issue 1 November 2016 | ISSN: 2320-2882

IJCRT1133462 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 117

VIII. CONCLUSION

A decade after the great DevOps experiment, the numbers are

clear: DevOps is here to stay — and for some excellent reasons.

Many found this unlikely, but DevOps managed to integrate

business users, developers, test engineers, and security engineers

into a single workflow that focuses on customer needs.

Developers and system managers avoid fighting and start helping

each other, which minimizes the tensions all around. Business

managers are pleased to obtain the software tools they need to

market goods and services. Managers are continually watching

the preferred dashboard indicators – sales, consumer satisfaction,

machine confidence – travel north. This means that everybody

should achieve the best performance and overall customer

experience. However, improvements like these don't quickly get

implemented. To deploy code more efficiently while your

processes remain smooth, one needs the flexibility of tracking all

adjustments to the technological environment accurately. The

New Relic program provides developers, as well as operations,

total visibility — from a digital transformation through apps and

complex connectivity, to automated alerts and workflows — that

can help those within an enterprise learn how software is

implemented and functions in real-time.

REFERENCES

[1] Herring, M,2015, “Continuous everything in DevOps,” Accenture.

Retrieved from: https://www.accenture.com/us-en/blogs/software-
engineering-blog/hering-continuous-everything-in-devops

[2] Virmani, M.,2015, “Understanding DevOps & bridging the gap from

continuous integration to continuous delivery. Fifth International
Conference on Innovative Computing Technology (INTECH 2015).

DOI:10.1109/intech.2015.7173368

[3] Boehm, B.,2006, "A view of 20th and 21st-century software engineering,"
in Proceedings of the 28th international conference on software

engineering, pp. 12–29.

[4] Riungu-Kalliosaari, L., Mäkinen, S., Lwakatare L. E., Tiihonen, J. and
Männistö, T.,2009, “DevOps Adoption Benefits and Challenges.

[5] Humble, J. and Farley, D., 2010, “Continuous Delivery: Reliable Software

Releases through Build, Test, and Deployment Automation (Adobe

Reader). Pearson Education.

[6] Limoncelli, T., Chalup, S., Hogan, C., and Limoncelli, T., 2014, The

practice of cloud system administration.
[7] Wettinger, J., Vasilios, A., and Leymann, F.,2015, "Automated Capturing

and Systematic Usage of DevOps Knowledge." Proceedings of the IEEE

International Conference on. IEEE Computer Society.
[8] Hüttermann, M, 2012, "Building Blocks of DevOps. DevOps for

Developers," 33-47. DOI:10.1007/978-1-4302-4570-4,3.

[9] Kim, G., Love, P., and Spafford, G., 2014, Visible Ops Security: achieving
common security and IT operations objectives in 4 practical steps, Eugene,

OR: IT Process Institute.

[10] Gill, A.Q., Loumish, A., Riyat, I., and Han, S.,2010, "DevOps for
information management systems," VINE Journal of Information and

Knowledge Management Systems, vol. 48, no. 1, pp. 122–139.

[11] Nybom, K., Smeds, J., and Porres, I.,2006, “On the impact of mixing
responsibilities between devs and ops,” in International Conference on

Agile Software Development, pp. 131–143.

[12] Gregory, J., and Crispin, L., 2015, More Agile Testing: Learning Journeys
for the Whole Team, Addison-Wesley, Upper Saddle River, N.J.

[13] Laan, S.2011, “IT infrastructure architecture: Infrastructure building blocks
and concepts,” U.S.A: Lulu Press.

[14] Bell, T. E., and Thayer, T. A.,2006, "Software requirements: Are they a

problem," in Proceedings of the 2nd international conference on Software
engineering, pp. 61–68.

[15] Huttermann, M., 2012, “DevOps for developers. Apress.

[16] Smeds, J., Nybom, K., and Porres, I.,2015, “DevOps: a definition and
perceived adoption impediments,” in International Conference on Agile

Software Development, pp. 166–177.

[17] Sacks, M., 2012, Pro website development and operations: Streamlining
DevOps for large-scale websites, Apress, [New York].

[18] Sikender Mohsienuddin Mohammad, "CONTINUOUS INTEGRATION

AND AUTOMATION", International Journal of Creative Research
Thoughts (IJCRT), ISSN:2320-2882, Volume.4, Issue 3, pp.938-945, July

2016, Available at :http://www.ijcrt.org/papers/IJCRT1133440.pdf or

http://doi.one/10.1729/Journal.24061
[19] Tessem, B., and Iden, J.,2008, “Cooperation between developers and

operations in software engineering projects,” in Proceedings of the 2008

international workshop on Cooperative and human aspects of software
engineering, pp. 105–108.

http://www.ijcrt.org/

