
www.ijcrt.org                                                         © 2024 IJCRT | Volume 12, Issue 6 June 2024 | ISSN: 2320-2882 

IJCRT24A6023 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org j178 
 

A COMPARATIVE STUDY ON THREE STAGE 

AND FIVE STAGE PIPELINING OF ARMs 

1Nimisha Rai,2Pallavi Kadam ,3Chaitali Tikhe 
1Assistant Professor 

 1 Department of Electronics, Dr. D. Y. Patil ACS College, Pimpri, Pune, India 
2Assistant Professor 

2Department of Electronics, Dr. D. Y. Patil ACS College, Pimpri, Pune, India 
3Assistant Professor 

3Department of E & TC, Pimpri Chinchwad Polytechnic, Akurdi, Pune, India 

 

Abstract: Pipelining is a critical technique in modern computer architecture that enhances CPU performance 

by overlapping the execution of instructions. This paper presents a comparative study between three-stage 

and five-stage pipelining architectures. By examining factors such as throughput, latency, complexity, and 

hazard management, the study aims to highlight the trade-offs and benefits of each pipeline depth. 

 

Index Terms -  Pipelining stages, Architecture, RISC, Throughput, Latency, Complexity, Hazards.   

 

I. INTRODUCTION 

Pipelining is a technique used in computer architecture to enhance the throughput of a CPU by dividing 

the execution process into distinct stages, allowing multiple instructions to be processed simultaneously. 

This method contrasts with non-pipelined architectures, where each instruction must complete all 

execution stages before the next instruction begins. Optimizing instruction execution through pipelining is 

crucial for improving CPU performance. By enabling parallelism within the processor, pipelining 

increases instruction throughput, reduces instruction latency, and maximizes resource utilization. As the 

number of pipelining stages is increased it affects the complexity, efficiency, and susceptibility to hazards. 

II. PIPELINING IN ARM  

  ARM is an Advanced RISC Machine.  RISC (Reduced instruction set computer) employs pipelining to 

improve processor              efficiency. Pipelining is a design method or procedure that improves the 

efficiency of data processing by keeping the CPU in a continuous fetching, decoding, and execution process 

known as (the F&E cycle).  Pipelining in ARM boosts execution speed, by applying parallelism in which 

one instruction is executed while other instructions are being decoded and fetched at the same time. It 

efficiently uses resources like memory, ALU and CPU to run them continually. The different arm 

processors have different stages of pipelining. To understand the concept we will have a look how 

instruction is executed in Non- Pipelined and Pipelined architecture.  

http://www.ijcrt.org/


www.ijcrt.org                                                         © 2024 IJCRT | Volume 12, Issue 6 June 2024 | ISSN: 2320-2882 

IJCRT24A6023 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org j179 
 

 
Figure 1: Non-Pipelined and Pipelined Architecture 

In Non-Pipelined Architecture instruction is executed in sequence. Instruction 1 is first fetched, decoded and 

executed then only second instruction is fetched. So each instruction requires three clock cycles to complete 

it’s exection. So three instructions will require nine clock cycles to complete execution. In pipelined 

architecture parallelism is achieved by overlapping many operations in single clock cycle. As shown in 

figure 1 in pipelined architecture when first instruction moved to decoding stage, the second instruction is 

fetched and so on. Hence it will take only five clock cycles to execute three instructions.  Assume clock 

duration of each clock cycle is 1 sec then average time to execute one instruction in non-pipelined 

architecture is 9/3 = 3 sec whereas as for pipelined architecture is 5/3=1.67sec. In this way pipelining 

increases overall throughput of the system. Reduces processor cycle time by processing more instruction 

simultaneously in single clock cycle. Pipelining also allows processor to work at higher frequencies.  

III. ARCHITECTURE OF ARM7 AND ARM9 

3.1. Three- Stage Pipeline Architecture of ARM 7 

 
Figure 2: Three stage pipelining architecture of ARM7. 

ARM 7 has Von Neumann architecture with a 32 bit data bus, which carries both instruction and data. Only 

load/ store/swap instruction access data from memory. The data operations are performed on registers 

instead of memory, uniform and fixed length instruction fields make decoding simpler. ARM7 processor 

uses three stages pipelining to increase the execution speed by performing many operations simultaneously 

and keeping CPU and memory to work continuously. In three sage pipelining instructions are executed in 

three stages. 

 
Figure 3: Three Stage Pipelining in ARM 7 

1. Fetch: In this cycle instructions are fetched from memory and placed into the instruction register whose 

address is given by PC. After fetching the instruction PC is incremented by four as length of each 

instruction is fixed.   

2. Decode: In this cycle instruction is decoded to identify which operation is going to be performed and 

appropriate control signals are generated and register are selected which store the operands.  

3. Execute: In this cycle data transfer, arithmetic or logical operation are performed and result is stored in 

register or memory. 

http://www.ijcrt.org/


www.ijcrt.org                                                         © 2024 IJCRT | Volume 12, Issue 6 June 2024 | ISSN: 2320-2882 

IJCRT24A6023 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org j180 
 

3.2 Five- Stage Pipeline Architecture of ARM 9 

 
Figure 4:  Five stage pipelining architecture of ARM9 processor. 

It has a Harvard Architecture. It has separate 4 KB of data and instruction cache memory to reduce 

execution time with separate data and address bus. It supports 5 stage pipelining fetch, Decode, Execute, 

Memory and write back.    

 
Figure 5:  Five stage pipelining of ARM  

 

The five stages of pipeline are 

1. Fetch – In this stage the instructions are fetched from the memory and stored in the instruction register. 

2. Decode – This stage decodes the instruction to identify that which operation is going to be performed 

and generates the appropriate control signals and takes the necessary steps for the next execution stage. 

It also performs register read in this stage. 

3. Execute – This stage performs arithmetic and logical operation and generates the result.  For memory-

related instructions such as load or store, the memory address is calculated by the ALU. 

4. Buffer/Data – Data memory is accessed if required. Otherwise, the ALU output is temporarily stored for 

a single clock cycle. 

5. Write back – The result generated by the ALU is written back to the register file, including any data 

loaded from memory. 

 

IV. HAZARDS IN PIPELINING  

In pipelining there is a possibility that some set of instructions have some type of dependency. Due to 

these dependencies some instructions cannot be executed in their designated time slot this is called as 

Hazards in pipelining. There are three types of hazards. 

1. Structural Hazards 

2. Data Hazards 

3. Control Hazards 

4.1. Structural Hazards 

Structural hazards occur in a pipelined processor when two or more instructions require the same hardware 

resource at the same time. This resource contention can lead to delays in instruction execution, thereby 

diminishing the overall efficiency of the pipeline. This type of situation cannot be handled by the hardware 

in an overlapped pipelined execution. 

 

http://www.ijcrt.org/


www.ijcrt.org                                                         © 2024 IJCRT | Volume 12, Issue 6 June 2024 | ISSN: 2320-2882 

IJCRT24A6023 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org j181 
 

Example 

 
Table 1: Structural Hazard in pipelining 

From the table it is observed that in cycle4 Instruction 1 and Instruction4 needs the same resource i.e. 

memory to complete their operation. This offers resource conflict.  

 

Solution for Structural Hazards 

a) Introduce stall in pipelining  

● When resource conflict arises the instruction which results in conflict must be delayed and all other 

subsequent instruction must be delayed until the resource becomes free.  

● Due to this delay the more number of clock cycles are required to execute the instruction which decreases 

CPU efficiency.  

 
Table 2: Stall in pipelining 

From the above table it is observed that I4 is fetched in cycle7 when the resource becomes free.  

b) To Increase Structural Resources  

1. By increasing the number of pipelining stages it reduces the bourdon of pipelining.  

2. Using different data and instruction cache memory. 

3. Separate ALU unit must be used for Address generation and floating point arithmetic. 

4. By using a register file with multiport access.   

 

4.2. Data Hazards  

Data hazards occur when an instruction depends on the result of a previous instruction that is still in the 

pipeline. If not       managed correctly, these dependencies can lead to incorrect results.  

Classification is based on the order of READ or WRITE operations on registers: 

1.RAW (Read After Write): This occurs when an instruction reads data that is produced by a preceding 

instruction. The dependent instruction must wait until the previous instruction finishes its write operation 

and stores the data in the register or memory. 

2.WAR (Write After Read): This less common hazard occurs when a subsequent instruction writes to a 

register before a previous instruction reads from it. It is typically found in systems with complex and 

special instructions. 

3. WAW (Write After Write): This happens when two parallel instructions write to the same register, and 

their order of execution is important. Ensuring that the second instruction writes its result after the first 

instruction completes its write operation is essential. 

http://www.ijcrt.org/


www.ijcrt.org                                                         © 2024 IJCRT | Volume 12, Issue 6 June 2024 | ISSN: 2320-2882 

IJCRT24A6023 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org j182 
 

Solution for Data Hazards 

1. Data Forwarding: This technique involves passing the result of a previous instruction directly to the 

functional unit that needs it. This makes the result available earlier to the dependent instruction, reducing 

stalls and improving pipeline efficiency. 

2. Compiler Optimizations: Compilers can detect data dependencies during code optimization. They may 

reorder instructions or insert NOP (No Operation) instructions to reduce data hazards when generating 

executable code. 

3. Register Renaming: Modern CPUs use register renaming to avoid WAW and WAR hazards. By 

allocating different physical registers for instructions that use the same logical register, these hazards can 

be prevented. 

4. Out-of-Order Execution: Some CPUs employ out-of-order execution, allowing instructions to be 

executed in a sequence different from their original program order. This enables the processor to execute 

independent instructions concurrently, reducing stalls caused by data hazards. 

5. Multiple Stages of Pipelines: CPUs with deeper pipelines can alleviate data hazards by breaking down 

instruction execution into more stages 

 

4.3 Control Hazard 

       Control hazard, also known as branch hazards, occurs due to branching instructions such as looping 

branching or conditional statements in the program. Branching instructions alters the execution of 

program flow, hence fetching of next instruction is uncertain in the pipelining. Fetching of the next 

instruction in the pipeline depends upon the result of branching instruction.  

 

 Solutions for Control Hazards 

1.    Stalling the pipeline: The pipeline must be stalled as soon as branch instruction is decoded and fetching 

of further instruction is prevented unless the branch decision is resolved.   

2.   Branch Prediction: Instead of stalling (delaying) , the fetching of further subsequent instructions is 

continued by predicting the result of branching instruction. If prediction is correct pipelining continues 

without any disturbance but if prediction is wrong the pipeline must be flushed and correct instructions 

must be fetched.  

 

V  COMPARATIVE ANALYSIS 

5.1 Performance of processor 

 The performance of the processor depends upon the time required to execute a program. It is given by  

Tprog = Ninst x CPI  

                        fclk 

Where Ninst = Number of instruction in the program 

            CPI = Average number of clock cycles per instruction  

             fclk = Processor clock frequency  

To increase the performance of the processor we have to either reduce CPI or to increase fclk. In three stage 

pipelining in the execute stage so many operations has to be performed in a single clock cycle, such as data 

transfer( memory to register , register to ALU), data processing and result writing. Hence the time period 

must be sufficiently long hence fclk cannot be increased above a certain limit. In three stage pipelining the 

execute stage is divided further into memory and write back. Hence each stage has to perform small 

operations in a single cycle. So we can reduce the time period of one clock cycle and correspondingly 

increase fclk.  

5.2 Throughput 

 Three-Stage Pipeline: Limited by fewer stages, resulting in lower instruction throughput. 

 Five-Stage Pipeline: Higher throughput due to more stages processing instructions concurrently. 

 

 

http://www.ijcrt.org/


www.ijcrt.org                                                         © 2024 IJCRT | Volume 12, Issue 6 June 2024 | ISSN: 2320-2882 

IJCRT24A6023 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org j183 
 

5.3 Latency 

 Three-Stage Pipeline: Lower latency as each instruction passes through fewer stages. 

 Five-Stage Pipeline: Higher latency since each instruction must pass through more stages. 

 

5.4 Complexity 

 Three-Stage Pipeline: Simpler design and control logic. 

 Five-Stage Pipeline: Increased complexity in design and control logic due to more stages and the need 

for efficient hazard management. 

5.5 Hazard Management 

5.5.1 Data Hazards 

 Three-Stage Pipeline: Fewer stages mean fewer opportunities for data hazards. 

 Five-Stage Pipeline: More stages increase the likelihood of data hazards, requiring techniques like 

forwarding and stalling. 

 

5.5.2 Control Hazards 

 Three-Stage Pipeline: Easier to manage with fewer stages. 

 Five-Stage Pipeline: More challenging due to the increased depth, requiring effective branch prediction 

and speculative execution. 

 

5.5.3 Structural Hazards 

 Three-Stage Pipeline: Fewer stages reduce the likelihood of resource conflicts. 

 Five-Stage Pipeline: More stages increase the potential for resource conflicts, necessitating resource 

duplication or time-multiplexing. 

VI    CONCLUSION 
 From the comparative study of three-stage and five-stage pipeline architectures we understand that 

ARM7 has Von Neumann Architecture while ARM9 has Harvard architecture with separate data and 

instruction cache. Five-stage pipelining has more CPI as compared to three-stage pipelining, since 

pipelining reduces the number of clock cycle to execute the instruction. Operating frequency of ARM9 is 

approximately double that of ARM7.  Higher throughput and better resource utilization, it also introduces 

increased complexity and a greater likelihood of hazards. Three-stage pipelining, on the other hand, 

provides a simpler and less hazardous design at the cost of reduced throughput. The choice between these 

pipeline depths depends on the specific requirements and constraints of the application, including 

performance goals, design complexity, and resource availability. 

 

VII. REFERENCES 

[1] Joshi Vaibhav Vijay, Balbhim Bansode, “ARM Processor Architecture” IJSETR, volume 4, Issue 10, 

October 2015.  

[2] Technical Reference Manual, “ARM11 MPCore processor”, copyright 2005, 2006, 2008, ARM limited, 

ARM DDI 0360E. 

 [3] RealView, “ARM Architecture Overview”, tools by ARM.  

[4] Ashton Raggatt McDougall, “ARM architecture”, retrieved in 2011. 

 [5] Grisenthwaite, Richard (2011), “ARM v8-A Technology Preview”, Retrieved 31 October 2011.  

[6] “Procedure call standard for the ARM Architecture”, ARM holdings. 30 November 2013. Retrieved 27 

May 2013. 

http://www.ijcrt.org/


www.ijcrt.org                                                         © 2024 IJCRT | Volume 12, Issue 6 June 2024 | ISSN: 2320-2882 

IJCRT24A6023 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org j184 
 

[7] ] K. P. K and V. Prakash A. M, "Designing and Implementation of 32-bit 5 stage Pipelined MIPS based 

RISC Processor Capable of Resolving Data Hazards," 2021 IEEE International Conference on Mobile 

Networks and Wireless Communications (ICMNWC), 2021, pp. 1-6, doi: 

10.1109/ICMNWC52512.2021.9688435 

 

  

 

 

 

 

   

 

 

  

 

http://www.ijcrt.org/

