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Abstract 

In this paper, we concentrate on the compressible viscoelastic streams in three-layered entire space. We use the energy 

method to find a one-of-a-kind global solution assuming minimal initial data. 

The higher-order spatial derivatives of the solution's time decay rates are also obtained. if the 

initial data belong to  additionally. 

 

Introduction 

In this paper, we consider the compressible viscoelastic flows 

  (1.1) 

The equations are considered in ℝ3 × [0, + ∞), where ρ, u ∈ ℝ3, F ∈ M3×3 (the set of 3 × 3 matrices with 

positive determinants) represent the density, the velocity, and the deformation gradient, respectively. The 

pressure P = P(ρ) is a smooth function of ρ for ρ > 0, F⊤ means the transpose matrix of F. μ and λ denote the 

shear viscosity and the bulk viscosity coefficients of the flow satisfying 

μ > 0,  2μ + 3λ ≥ 0. 

The positive parameter α represents the speed of propagation of shear waves. For system (1.1), the 

corresponding elastic energy is chosen to be the special form of the Hookean linear elasticity 

 

which, however, does not reduce the essential difficulties for analysis. 
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We investigate the Cauchy problem of system (1.1) with the following initial condition: 

(ρ, u, F)|t=0 = (ρ0(x), u0(x), F0(x)),  x ∈ ℝ3. 

We also assume that 

div(ρF⊤) = 0, Flk(0)∇lFij(0) = Flj(0)∇lFik(0). 

(1.2) 

It is standard that the condition (1.2) is preserved by the flow, which has been proved in Refs. 8 and 20. 

For the incompressible viscoelastic fluids, there has been much important progress on classical solutions; refer 

to Refs. 1, 16, and 24 and references therein. However, the global existence of weak solutions to the 

incompressible viscoelastic flows with large initial data is an outstanding open problem, although there has 

been some progress in this direction.15,17,18 For the compressible viscoelastic flows, the local existence of a 

multidimensional strong solution was obtained in Ref.7, and the global existence of a strong solution with the 

lowest regularity was shown in Refs. 8 and 20. 

The existence and convergence rate of the solutions is an important problem in the PDE theory. The decay rate 

of solutions to the Navier-Stokes system has been investigated extensively, see Refs. 2–6, 13, 14, 19, 22, 23, 

and 25 and references therein. However, due to the lack of dissipation on the deformation tensor F, it seems 

that the approaches employed in the previously mentioned works (e.g., the Fourier splitting method22,23) fail 

to apply, so far, there are few results on the large time behavior, especially about the higher-order spatial 

derivatives of the solution. Recently, Hu-Wu9 proved the global existence of the strong solutions by the 

standard energy method under the condition that the initial data are close to the constant equilibrium state 

in H2-framework. And if additionally the initial data belong to L1, the optimal convergence rates of the 

solutions in Lp-norm with 2 ≤ p ≤ 6 and optimal convergence rates of their spatial derivatives in L2-norm are 

obtained as follows: 

 (1.3) 

 (1.4) 

In Ref. 10, by introducing a new decomposition via Helmholtz’s projections, Hu-Wu first provide an 

alternative proof on the existence of global smooth solutions near equilibrium, then they obtained the 

optimal L2 decay rates for the global smooth solutions and their spatial derivatives for incompressible 

viscoelastic fluids in the whole space ℝd(d = 2, 3) with additional assumptions that the initial data belong 

to L1 and their Fourier modes do not degenerate at low frequencies. In Ref. 12, the authors established the local 

and global well posedness in the Lp based critical Besov space and give a time decay rate in the Besov space 

framework. And in Ref. 11, the authors got the optimal time decay rate when the initial data were just small in 

the critical Besov space framework. 

In this paper, we first establish the global solution by the energy method (1.1) under the assumption that 

the H3 norm of the initial date is small, but the higher order derivatives can be arbitrarily large. Then we 

establish the time decay rates for the compressible viscoelastic flows by energy estimates and the Fourier 

splitting method by assuming that the initial data belongs to L1(ℝ3) additionally. 

Notation Throughout this paper, ∇l with an integer l ≥ 0 stands for the usual any spatial derivatives of order l. 

When l < 0 or l is not a positive integer, ∇l stands for Λl defined by Λsu=F−1(|ξ|suˆ(ξ)), where uˆis the Fourier 

transform of u and ℱ−1 its inverse. We will employ the notation A ≲ B to mean that A ≤ CBfor a universal 

constant C > 0 that only depends on the parameters coming from the problem. For the sake of conciseness, we 

write ‖(A,B)‖X ≔ ‖A‖X + ‖B‖X. 

In this subsection, we first reformulate the system (1.1). Without loss of generality, we assume P′(1) > 0, and 

denote χ0 = (P′(1))−½. For ρ > 0, system (1.1) can be rewritten as 
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 (1.5) 

where we used the condition div(ρF⊤) = 0 for all t ≥ 0, which ensures that the ith component of the vector 

div(ρFF⊤) = 0 is 

∇j(ρFikFjk) = ρFjk∇jFik + Fik∇j(ρFjk) = ρFjk∇jFik. 

We denote 

 

then 

 (1.6) 

where 

fi = aEjk∇jEik − g(ϱ)(μ△vi + (μ + λ)∇idivv) − v ⋅ ∇vi − h(ϱ)∇iϱ,  

(1.7) 

and the nonlinear functions of ϱ are defined by 

 (1.8) 

Without loss of generality, we will assume that a = 1 for the rest of this paper. 

Our main results are stated in the following theorem. 

Theorem 1.1. 

Let N ≥ 3, assume that (ϱ0, v0, E0) ∈ HN(ℝ3). Then there exists a constant δ0 > 0 such that if 

‖(ϱ0,v0,E0)‖H
3 ≤ δ0,  

(1.9) 

then the problem (1.1) has a unique global solution (ϱ(t), v(t), E(t)) satisfying that for all t ≥ 0, 
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 (1.10) 

If further, (ϱ0, v0, E0) ∈ L1(ℝ3), then 

 (1.11) 

and for 2 ≤ p ≤ ∞, there holds 

 (1.12) 

especially, 

 (1.13) 

Energy Estimates 

In this subsection, we will derive the a priori nonlinear energy estimates for the system (1.5). Hence we 

assume a priori that for sufficiently small δ > 0, 

 (2.1) 

First of all, by (2.1) and Sobolev’s inequality, we obtain 

 (2.2) 

Hence, we immediately have 

|g(ϱ)|, |h(ϱ)| ≤ C|ϱ|,  |g(k)(ϱ)|, |h(k)(ϱ)| ≤ C for any k ≥ 1,  

(2.3) 

where g, h are nonlinear functions of ϱ defined by (1.8). 

We will establish the global existence of solution for the compressible viscoelastic flows. For this purpose, we 

begin with the energy estimates including ϱ, v and E themselves, the following lemma may refer to Ref. 26, 

and we state the results here for the sake of convenience. 
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Lemma 2.1. 

If  then for k = 0, ⋅ ⋅ ⋅ , N − 1, we have 

 (2.4) 

 (2.5) 

 

(2.6) 

 (2.7) 

Next, we will combine all the energy estimates that we have derived to prove (1.10) of Theorem 1.1. 

Proof. 

We first close the energy estimates at each lth level in our weaker sense. Let N ≥ 3 and 0 ≤ l ≤ m − 1 with 1 

≤ m ≤ N. Summing up the estimates (2.4) of Lemma 2.1 from k = l to m − 1, since  is small, we 

obtain 

 (2.8) 

Let k = m − 1 in the estimates (2.5) of Lemma 2.1, we have 

 

(2.9) 

Adding the inequality (2.9) to (2.8), we get 
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 (2.10) 

Summing up the estimates (2.6), (2.7) of Lemma 2.1 from k = l to m − 1, respectively, and combining the 

results, we have 

 (2.11) 

 

Multiplying (2.11) by 2C2δC3, adding it to (2.10), since δ > 0 is small, we deduce that there exists a constant C5 > 

0 such that for 0 ≤ l ≤ m − 1 

 

 

Then we may write (2.12) as that for 0 ≤ l ≤ m − 1 

 (2.14) 

Taking l = 0 and m = 3 in (2.14), and then integrating directly in time, we get 

 (2.15) 

By a standard continuity argument, this closes the a priori estimates (2.1) if we assume that ∥(ϱ0,v0,E0)∥2H3≤δ0 is 

sufficiently small. This in turn allows us to take l = 0 and m = N in (2.14), and then integrate it directly in time 

to obtain 
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This proved (1.10). 

Convergence Rate 

In this section, we shall prove the decay rates of the solution stated in Theorem 1.1 under additional 

assumptions that the initial data belong to L1. In Ref. 9, the authors proved the following lemma, which utilizes 

the decay-in-time estimates for the linearized system to control the first order derivatives by the higher order 

derivatives. 

Lemma 3.1. 

Let (ϱ, v, E) be the solution to the initial value problem (1.6), under the 

assumption  then we have 

 

(3.1) 

where  

Now, we first establish the following time decay rates for the compressible viscoelastic flows (1.6). 

Lemma 3.2. 

Under the assumptions of Theorem 1.1, the global solution (ϱ, v, E) of problem (1.6) satisfies 

forl=0,1. 

(3.2) 

Proof. 

Adding to both sides of (2.14) gives 

 (3.3) 

Taking l = 1 and m = N in (3.3), we get 

 (3.4) 

It follows from the Gronwall inequality and Lemma 3.1 that 
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 (3.5) 

where 

 and we have used the fact 

 

Based on the definition of M(t) and (3.5), we get 

 

which implies 

M(t) ≤ C, (3.6) 

since δ > 0 is sufficiently small. 

Hence, we have the following decay rates 

(3.7) 
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which together with (1.3) implies (3.2). 

Lemma 3.3. 

Under the assumptions of Theorem 1.1, the global solution (ϱ, v, E) of problem (1.6) satisfies 

forl=0,1,⋅⋅⋅,N−1. (3.8) 

Proof. 

We are ready to prove (3.8) by induction. When l = 0, 1, the inequality (3.8) has been established in Lemma 

3.2. Suppose (3.8) holds for the case l = k − 1, and k = 2, 3, ⋅ ⋅ ⋅ , N − 1, that is 

 (3.9) 

We need to show (3.8) holds for l = k. Let l = k and m = N in the estimates (2.14), we have 

 (3.10) 

Adding  to both sides of (3.10) gives 

 (3.11) 

As in Ref. 21, we define 

 

for a constant a that will be specified below. Then 

 

Thus, we have 
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 (3.12) 

Similarly, one has 

 (3.13) 

 (3.14) 

Summing up the estimates (3.14) for k from k to N, one has 

 (3.15) 

Substituting the inequalities (3.12), (3.13), (3.15) into (3.11), and applying Lemma 3.2 and (3.9), we have 

where we 

have used 

 

for some sufficiently large time t ≥ a − 1 , such that  

This, together with the definition of  implies that 

(3.16) 

Choosing 

 

and multiplying both sides of (3.16) by (1 + t)k+2, we get 
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 (3.17) 

Integrating (3.17) from 0 to t yields 

 (3.18) 

Hence, we have verified that (3.8) holds on for the case l = k, this concludes the proof of lemma. 

With Lemma 3.2 and Lemma 3.3 in hand, we are ready to prove Theorem 1.1: 

Proof. 

With the help of Lemma 3.2 and Lemma 3.3, it is easy to obtain the conclusion (1.11). As for (1.12), 

by (1.11) and the Gagliardo-Nirenberg inequality, 

 

the claim follows. 
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