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Abstract: We analyze the gravitational collapse of higher dimensional monopole Vaidya space-time and also charged Vaidya 
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I. INTRODUCTION 

                       Most important and challenging problem in classical general relativity is proof of Cosmic Censorship Hypothesis 

(CCH). Cosmic Censorship Hypothesis proposed by R. Penrose [1] which state that singularities formed in gravitational collapse 

physically reasonable matter cannot be observed. There are two versions of this hypothesis. The weak Cosmic Censorship 

Hypothesis state that all singularities formed in gravitational collapse are hidden behind the event horizon of the gravity and are 

invisible to distant observer from infinity. On the other hand the strong Cosmic Censorship Hypothesis asserts that no 

singularities are visible. Many researchers have attempted to give precise reformulation to this hypothesis, but neither proof nor 

mathematical formulation for this hypothesis is available so far, on the contrary several examples of naked singularities have been 

found which includes collapse of dust [2-9], radiation [10-15], perfect fluid [16-22] etc. The existence of a black hole or a naked 

singularity may have shown all these models. One of the most important examples having naked singularities is the Vaidya 

solution [23]. This was shown first by Papapetrou [12], since then this solution is being used to analyze the scenario of 

gravitational collapse in general relativity. Recently Anzhong Wang [24] introduced a more general family of Vaidya space-times 

which covers monopole solutions, de- sitter and anti de-sitter solutions and charged Vaidya solutions as special cases. 

                  Recently, there has been renewed interest in studying higher dimensional space-ties from the point of view of both 

cosmology [25] and gravitational collapse [25-26]. An interesting problem that arise the effect of the higher dimension can 

have on the formulation of naked singularity [27-32]. The present work deals with the spherically symmetric collapse of 

monopole Vaidya case and charged Vaidya case. It admits strong curvature naked singularities. 

            In this paper we have generalized the higher dimensional Vaidya space-time collapse [27, 30, 33] and              

investigated the nature of the singularities arising in this space-time. Also we describe the existence of strong curvature naked 

singularities in monopole Vaidya solution. 
II HIGHER DIMENSIONAL VAIDYA SPACE-TIME 

The (n+2) dimensional space time of generalized Vaidya metric is as follows [34]   
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where v is advanced Eddington time coordinate and r is radial coordinate with the condition  r0
  
 

where m(v, r) is gravitational mass which will present in the sphere of radius r and  
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is the metric of n- sphere and we denote this metric as 
2d  

The corresponding energy momentum tensor is given by  
   m
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                                                                                                                             (3) 
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Here the above P and ρ represents the thermodynamic pressure and energy density, where as µ represents energy density of 

Vaidya null radiation. 

 nl , are linearly independent two eigen vectors of energy momentum tensor. 

These Eigen vectors are having the components  
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Especially for the above equation (5) when P = ρ = 0 then it reduces to Vaidya solution of higher dimensional space time with m= 

m (v)  

Now we consider energy momentum tensor of equation (7) as the general case. 

The energy conditions for the above will be as follows: 

1. The dominant energy conditions are 

µ  ≥  0,   ρ ≥ P ≥ 0                                                                                                           (9) 

2. The weak and strong energy conditions are  

µ  ≥  0,   P ≥ 0  ,  ρ  ≥ 0                                                                                        (10) 

Einstein field equations is given by 

                         
 TkG 

                     
                                     (11)       

Where G is Einstein tensor, k is Gravitational constant 

From equations (1), (3) and (4) which is having Stress Energy tensor is given by  
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Here dash and dot represent differentiation with respect to ‘r’ and ‘v’ respectively. 

From the above equations, the limitations on ‘m’ should be  
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 miimmi  to satisfy the energy conditions  

(i)indicates the mass function either increases with ‘r’ or is constant 

(ii) indicates the matter within radius ‘r’ increases with time. 

 

III NAKED SINGULARITIES IN MONOPOLE VAIDYA SPACE-TIME 

. 

 

Monopole solutions in Vaidya background are given by [35-36] 

  11,   nn vvrvm                                                                                                                                                 (15) 

where   and   are arbitrary constants.  

With this mass function, the metric (1) becomes 
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To investigate the nature of singularity that may form in the gravitational collapse we need to consider the radial null geodesics 

defined by 02 ds , taking 0321 


 into account. 
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The equation for the radial null geodesics for the metric (16) is given by 
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To investigate the nature of the singularity, we need to consider the radial null geodesics defined by 02 ds . Equation 

for the null geodesics for the metric (17) is given by  
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It can be easily checked that the above differential equation has singularity at 0,0  rv . 

For the geodesic tangent to be uniquely defined and exist at this point we must have [37] 
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i.e.                 021 00  XX n                                                                 (20) 

The variable X can be interpreted as the tangent to the outgoing geodesics, hence if equation (20) has at least one positive and real 

root then the singularity could be naked. If the equation (20) has no real and positive root then the collapse ends into a black hole. 

It can be checked from the Theory of equations that above equation has at least three positive roots. 

To investigate whether the naked singularities will arise or not, we take some different values of  ,  and n. 

Now if we take 4n  then the equation (20) reduces to    

                         
  021 0

4

0  XX                                                                                                                             (21) 

If we take α = 0.001 then the roots of equation ( 21) obtained for different values of β in monopole space-time are shown in the 

following table. 

                                         Table 1 Values of X0 for different values of β
 

 

 

 

 

                                       

                                   

 

                             Figure.1 Graph of the Values of X0 against the values of β for fixed value of α 

If we observe above graph we see that the values of X0 increases as we increase the values of β. 

If we take β= 0.001 then the roots of equation (21) obtained for different values of α in monopole space-time are shown in the 

following table. 

1.9

2

2.1

2.2

2.3

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

X0

β

α=0.001

β X0 

0.01 2.03761 

0.02 2.05916 

0.03 2.08119 

0.04 2.1037 

0.05 2.1268 

0.06 2.1504 

0.07 2.1745 

0.08 2.1993 

0.09 2.2247 
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                                              Table 2.Values of X0 for different values of α 

 

 

 

 

 

 

 

 

 

 

                        

                

                              Figure.2. Graph of the Values of X0 against the values of α for fixed value of β 

If we observe the above graph then we see that the values of X0 increases as we increase the values of α. 

Now if we take 5n  then the equation (20) reduces to    

                         
  021 0

5

0  XX                                                                                                                               (22) 

If we take α = 0.001 then the roots of equation (22) obtained for different values of β in monopole space-time are shown in the 

following table. 

                            Table 3.Values of X0 for different values of β
 

β X0 

0.01 2.0574 

0.02 2.0806 

0.03 2.1044 

0.04 2.1288 

0.05 2.154 

0.06 2.18 

0.07 2.2068 

0.08 2.2344 

0.09 2.263 

0.1 2.2925 
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α X0 

0.01 2.03761 

0.02 2.0591 

0.03 2.0811 

0.04 2.1037 

0.05 2.1268 

0.06 2.1504 

0.07 2.1745 

0.08 2.1999 

0.09 2.2247 

0.1 2.2507 
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                       Figure.3. Graph of the Values of X0 against the values of β for fixed value of α 

If we observe above graph we see that the values of X0 increases as we increase the values of β, which ensures that the singularity 

is naked. 

If we take β= 0.001 then the roots of equation (22) obtained for different values of α in monopole space-time are shown in the 

following table. 

                              Table 4.Values of X0 for different values of α 

α X0 

0.001 2.0371 

0.002 2.0799 

0.003 2.1353 

0.004 3.0377 

0.005 2.4031 

                           

                   Figure.4. Graph of the Values of X0 against the values of α for fixed value of β 

We observe from the above graph we see that the values of X0 increases as we increase the values of β up to 004.0 . 

Afterwards X0 decreases and beyond 006.0 we get imaginary roots which gives black holes. 

IV Naked Singularities in Charged Vaidya space-time 

Following Anzhong Wang [24], we defined the general expression for charged Vaidya space-time as 
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                            where α and β are arbitrary constants. 

                     With this mass function the metric (1) becomes, 
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After some computation we get X0, which is the tangent to the radial null geodesic at the singularity given by  
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which implies 

                                                 0200

12

0  XXX nn                                                                                            (24) 

The variable X can be interpreted as the tangent to the outgoing geodesics, hence if equation (24) has at least one positive and real 

root, then the singularity could be naked. If the equation (24) has no real and positive root then the collapse ends into a black hole. 

It can be checked from the Theory of equations that above equation has at least three roots. 

Now if we take 4n  then the equation (24) reduces to    
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0  XXX                                                                                                                      (25) 

If we take 001.0  then the roots of equation (25) obtained for different values of α in monopole space-time are shown in the 

following table. 

                              Table 5 Values of X0 for different values of β 

 

 

 

 

 

 

 

                      

               

                     Figure 5 Graph of the Values of X0 against the values of β for fixed value of α 
If we observe above graph we see that the values of X0 decreases as we increase the values of β, which ensures that the singularity 
is naked.  
If we take β= 0.001 then the roots of equation (25) obtained for different values of α in monopole space-time are shown in the 
following table. 
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1.65

1.7

1.75

1.8

1.85

1.9

1.95

0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009

X0

β

α=0.001

β X0 

0.001 1.918 

0.002 1.8586 

0.003 1.8156 

0.004 1.7819 

0.005 1.754 

0.006 1.7303 

0.007 1.7096 

0.008 1.6913 

0.009 1.6749 
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                                              Table 6 Values of X0 for different values of α 

α X0 

0.01 2.028 

0.02 2.22 

0.03 2.5681 

0.04 3.0283 

0.05 3.4073 

0.06 3.7075 

0.07 3.9583 

0.08 4.1764 

0.09 4.3708 

0.1 4.5475 

                              

                                Figure 6 Graph of the Values of X0 against the values of α for fixed value of β 

If we observe above graph we see that the values of X0 increases as we increase the values of α, which ensures that the singularity 

is naked. 

 

 

V CONCLUDING REMARK 

Gravitational collapse is the most striking phenomenon in general relativity. The CCH has provided strong motivation for 

research in the field. In the absence of general proof for CCH, many examples have been proposed in which naked singularity is 

the outcome of gravitational collapse. 

                      In the present work we have studied the higher dimensional monopole and charged Vaidya space-time and shown 

that naked singularities do occur as the end stage of gravitational collapse.  

Thus one may argue that the dimension of space-time does not play any fundamental role in the formation of naked singularities. 

Thus the higher dimensional monopole and charged Vaidya space-time violates Cosmic Censorship Hypothesis. 
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