
www.ijcrt.org                                                     ©  2021 IJCRT | Volume 9, Issue 12 December 2021 | ISSN: 2320-2882 

IJCRT21X0015 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b217 
 

An Approach to Auto Energetic Issues in Video 

Games Based on Program Plan Design 
 

Santosh Shukla  

IET, Dr RML Avadh University Ayodhya UP 
 

Er. Ashish Kumar Pandey 

Assistant Professor, Department of CSE, IET . Dr RL Avadh University Ayodhya UP 

 
Er. Shobhit Srivastava 

Assistant Professor, Department of CSE, IET . Dr RL Avadh University Ayodhya UP  

 

Chapter 1 

Introduction 
Building dynamic video games is surprisingly complex; so much of the existing research and development in this 

area has led to the creation of games that are largely deterministic in nature.   What occurs in the virtual game worlds 

and how this is presented to the player is for the most part fixed, and quite unable to adequately react to the 

interactions of the player [1]. While interesting in their own ways, these games are often too inflexible and rigid to 

be able to effectively meet the needs and expectations of a large and diverse player population [1], especially as these 

needs and expectations change as players mature, refine their skills, and form new experiences [2]. In the end, this 

leads to a loss of engagement, a break of immersion, and an overall disappointing player experience [3][4]. 

It has been recently reported [5] that 90% of game players never finish a game. One of the key engagement factors 

for a video game is an appropriate level of difficulty, as players become frustrated when the games are too hard and 

bored when they are too  easy  [6].     From  the  point  of  view  of  skill  levels,  reflex  speeds,  hand-­‐eye 

coordination, tolerance for frustration, and motivations, video game players may vary drastically [7]. These 

factors together make it very challenging for video game designers to set an appropriate level of difficulty in a video 

game. Traditional static difficulty levels (e.g., easy, medium, hard) often fail in this context as they expect the 

players to judge their ability themselves appropriately before playing the game and also try to classify them in broad 

clusters (e.g., what if easy is too easy and medium is too difficult for a particular player?). 

Auto dynamic difficulty (ADD), also known as dynamic difficulty adjustment (DDA) or dynamic game balancing 

(DGB), refers to the technique of automatically changing the level of difficulty of a video game in real time, based on 

the player’s ability (or, the effort s/he is currently spending) in order to provide them with an “optimal experience”, 

also sometimes referred to as “flow”. If the dynamically adjusted difficulty level of a video game appropriately 

matches the expertise of the current player, then it will not only attract players of varying demographics but also 

likely to enable the same player to play the game repeatedly without being bored. Popular games  such  as  “Max  

Payne”,  “Half-­‐Life  2”  and  “God  Hand”  use  the  concept  of  auto dynamic difficulty [7][8]. How ADD is delivered 

in these games from a gameplay perspective can only be discerned through reviewing these games or from official 

strategy guides (or, occasionally in presentations such as [9]). Unfortunately, given the highly competitive nature of 

the games industry, no information is publicly available about how ADD is implemented in these games from a 

software design perspective.    While others have studied ADD in games, this has been done in an ad-­‐ hoc fashion in 

terms of software design and is therefore not reusable or applicable to  other  games.  Recreating  an  ADD  

http://www.ijcrt.org/


www.ijcrt.org                                                     ©  2021 IJCRT | Volume 9, Issue 12 December 2021 | ISSN: 2320-2882 

IJCRT21X0015 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b218 
 

system  on  a  game-­‐by-­‐game  basis  is  both expensive and time consuming, ultimately limiting its usefulness.   For 

this reason, we were motivated to leverage the benefits of software design patterns1 [10][11] to construct an ADD 

framework and system [12] that is reusable, portable, flexible, and maintainable. 

 

Chapter 2  

Related Work 
Considering the variety of contexts and the focus of related research, we divide our related work discussion into 

three sub-­‐sections. First we highlight the research that explores the use of ADD in video games. Afterwards, we 

discuss the literature on using software design patterns in video games. Finally, we discuss the research gap and put 

our work in the context of this other work. 

 

Auto Dynamic Difficulty 

In recent years, ADD has received notable attention from numerous researchers. Some of this research is primarily 

focused on knowledge seeking, whereas other works present solutions such as frameworks and algorithms. 

Additionally, in some research, new solutions are presented together with empirical validations. Here, we review 

some of these works. In  [17],  Demasi  and  Cruz  explored  the  potential  of  co-­‐evolutionary  algorithms2 to create a 

user-­‐driven evolution of agents in an ANSI C based online action game. Here user-­‐driven  evolution  means  the  

enemies  evolve  and  get  smarter  by  the  same proportion as the player gets better by playing the game. The game 

scenario is a square room (480 x 480 pixels) where the player character needs to survive against some 16 little 

monsters (a touch from any monster kills the player character). The player character has a gun to fight the monsters. 

When the player character kills a monster, another one enters the room, so that there are always 16 enemies alive. 

The player character starts with 20 shots in the gun and every 15 seconds a new cartridge with 20 shots appears in a 

random location in the game. The player character can teleport once in every 30 seconds from its local position to a 

random location. The player character and the enemies have the same speed. The enemies can move only in four 

directions (up, down, left, right), but the player character can walk or shoot in any one of the eight directions 

including diagonals. The player character has three lives; once all lives are lost the game is over. The final score 

is the number of enemies killed. These 16 non-­‐player characters (NPC) are monitored and evolved when they die or 

reach their “time to live”. The authors proposed four different methods for the online evolution of the agents: (i) 

using game specific information; (ii) online evolution using offline-­‐evolved data; (iii) using online data 
 

1 Co-­‐evolutionary algorithms (CEAs) are defined by their interaction-­‐driven fitness, which means an individual 

fitness is determined based upon the interaction with other individuals in the population. That interaction can be 

cooperative, which means that individuals are evolving towards a common goal, or it can be competitive, which 

means that individuals are competing among themselves to win some sort of resource.  
 

only;  and  (iv)  using  method-­‐iii  after  method-­‐i  or  ii.  The  authors  used  a  heuristic fitness function for agent 

evolution and analyzed different game based values. The results indicated that method-­‐iii (i.e., using online data 

only) can yield good results for online games which require real-­‐time interaction and are unpredictable to some 

degree. 

 

 

 

 

Software Design Patterns in Video Games 

In a number of works, video games have been proposed as a tool to teach software engineering in general and design 

patterns in particular. On the other hand, unfortunately, work focusing on how game developers can benefit from the 

usage of software design patterns is relatively rare. Here we discuss examples of both types of research. 

Gestwicki and Sun [23] presented a video game based approach to teach software design patterns to computer 

http://www.ijcrt.org/


www.ijcrt.org                                                     ©  2021 IJCRT | Volume 9, Issue 12 December 2021 | ISSN: 2320-2882 

IJCRT21X0015 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b219 
 

science students. They developed an arcade style game, EEClone, which consists of six key design patterns and then 

used these patterns in their case study. Student participants analyzed the game to learn the usage of those patterns. 

Antonio et al. [24] described their experience in teaching software design patterns using a number of incremental 

abstract strategy game design assignments. In their approach, each assignment was completed by refactoring and 

using design patterns on previous assignments. 

Narsoo et al. [25] described the usage of software design patterns to implement a single player Sudoku game for the 

J2ME platform. They found that through the use of design patterns, new requirements could be accommodated by 

making changes to fewer classes than otherwise possible. 

Research Gap 

As we can see from the above discussion, the work on ADD in video games focuses on tool building (e.g., 

framework (Bailey and Katchabaw [7]), algorithms (Hunicke [15]; Hao et al. [6]) etc.) and empirical studies (e.g., 

Rani et al. [14]; Orvis et al. [22] etc.), but they all use an ad-­‐hoc approach from a software design point view. On 

the other hand, research on using software design patterns in video games is mostly 
 

limited to using video games as a means for teaching design patterns in undergraduate computer science courses 

(e.g., Gestwicki and Sun [23]; Antonio et al. [24]). In contrast, much work has been done towards game design 

patterns, such as the foundational work of (Björk and Holopainen [26]) and many others, but the focus there is game 

design and not software design, which is a subtle, yet important distinction. Thus, motivated by this research gap, in 

this thesis, based on empirical studies, we explore a software design pattern based approach to enable auto dynamic 

difficulty in video games. 
 

 

Chapter 3 

Research Organization 

In this chapter, we discuss the overall research goals and how these goals are devised into a number of incremental 

studies, and provide a brief description of each study. 
 

Research Goals 

Our primary research goal is: 

 

Research goal, G: To develop a set of software design patterns, a process for applying those design patterns, a tool 

for using these design patterns effectively, for implementing auto dynamic difficulty in video games, and to 

empirically validate the overall approach. 

We decompose this high level overall research goal to following atomic sub-­‐goals: 

 

G1: To develop a set of software design patterns for implementing ADD in video games. 

 

G2: To validate that the proposed design patterns provide a reusable solution for implementing ADD in video 

games. 
 

 

G3: To analyze the source code reusability achieved through the usage of these design patterns to implement ADD 

in video games. 

http://www.ijcrt.org/


www.ijcrt.org                                                     ©  2021 IJCRT | Volume 9, Issue 12 December 2021 | ISSN: 2320-2882 

IJCRT21X0015 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b220 
 

Associated goals: G1, G2 

Activities: 

 Derive a set of design patterns to implement auto dynamic difficulty in video 

games. 

 Apply those design patterns in a proof-­‐of-­‐concept prototype Java game. 

Game studied: Pac-­‐Man 

Achievements: 

 We have a set of design patterns for implementing auto dynamic difficulty in video 

games. 

 We have a Java implementation of those design patterns for a prototype game. 

 We have a preliminary validation of design patterns based approach for auto 

dynamic difficulty. 

G4:  To  define  a  concrete  set  of  activities  (possibly  step-­‐by-­‐step)  needed  for  applying our design pattern based 

approach in video games. 

G5:  To  develop  a  source  code  generation  based  semi-­‐automatic  framework  that  will assist in applying the ADD 

approach in video games. 

 

Research Studies 

We have organized four different studies to achieve the above research goal. Our intention  for  each  study  is  to  

address  one  or  more  sub-­‐goals  discussed  in  Section 

3.1. Each study involves some development and empirical study around a specific game. Here, in Table 1, we 

briefly describe each of these studies: 

Table 1: Decomposed executable studies from research goals 
 

 

 

 

 

S
tu

d
y

-­‐1
: 

 

http://www.ijcrt.org/


www.ijcrt.org                                                     ©  2021 IJCRT | Volume 9, Issue 12 December 2021 | ISSN: 2320-2882 

IJCRT21X0015 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b221 
 

S
tu

d
y

-­‐2
: 

Associated goals: G2, G3 

Activities: 

 Generalize the implementation from Study-­‐1, so that it can be applied to other games. 

 Apply the generalized implementation to a third party game developed in Java with minimal 
modifications. 

 Based on the implementations from Study-­‐1 and Study-­‐2, measure and discuss how different 

software qualities (e.g., reusability, maintainability etc.) are impacted by the design pattern approach. 

Game Studied: TileGame 

Achievement: 

 We have a more generic Java implementation of the design patterns. 

 We have validated that the design patterns based approach for auto dynamic difficulty can easily 
be applied to games that were not implemented with any such prior motivation. 

 We, based on empirical grounds, have discussed how different software qualities 

are positively impacted by the usage of the proposed approach. 

S
tu

d
y

-­‐3
: 

Associated goals: G2, G3, G4 

Activities: 

 Based on the experience from Study-­‐1 and Study-­‐2, describe a step-­‐by-­‐step process to use 

the design patterns in a game. 

 Follow the described process to apply the generalized implementation to a commercial 

Java game with minimal modifications. 

 Based on the implementations from Study-­‐1, Study-­‐2 and Study-­‐3, measure and discuss to 
what extend the implemented source code are reusable. 

Game Studied: Minecraft 

Achievement: 

 We have described a step-­‐by-­‐step process to apply the design patterns. 

 We have validated that on following the process, the design patterns based approach for 

auto dynamic difficulty can easily be applied to large-­‐scale commercial game such as 
Minecraft. 

 We have further analyzed the effectiveness of the design pattern based approach 

by empirically investigating the reusability of the source code and the process across multiple 

games. 

 

 

http://www.ijcrt.org/


www.ijcrt.org                                                     ©  2021 IJCRT | Volume 9, Issue 12 December 2021 | ISSN: 2320-2882 

IJCRT21X0015 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b222 
 

S
tu

d
y

 4
: 

Associated goal: G5 

Activities: 

 Analyze the instantiation and specialization related artifacts (i.e., source code) that  were identified 

as not reusable in prior studies. 

 Define a relational model to represent the dynamic information necessary to implement 

those artifacts. 

 Develop a framework, which will allow collecting required information from a game,  create 
instance of the model based on that information, and provide an effective way for managing and fine 

tuning the model and finally generating source code based on the model. 

Game Studied: TileGame 

Achievement: 

 We  have a semi-­‐automatic tool, which with the help of code generation allows us to implement the 

design pattern based approach on a video game with minimum effort. 

S
tu

d
y

 5
: 

Associated goal: G2 

Activities: 

 Conduct a case study where an external developer uses our design pattern based approach to 
implement ADD. 

 Analyze the data collected from this case study to understand the ease of usage and effort 
associated in applying our design pattern based approach. 

 Identify potential issues from the critical feedback from the developer about the design patterns 
and/or the base level implementations provided to the developer and plan to address the issues. 

Games Studied: Tetris and Space Invaders 

Achievement: 

 From a preliminary user study, we have verified that a developer with no prior 

knowledge of our research can learn and apply our design pattern based approach to develop ADD in 

games with minimal effort. 

 

Please note that the organization described in the above table is for execution purposes only and, while we discuss 

the results from these studies in upcoming chapters, we will not always follow this organization, and findings from 

different studies will be discussed together in certain chapters. 

 

Chapter 4 Design 

Patterns 
As we discussed earlier in Chapter 2, related work on ADD in video games has focused on tool building (e.g., 

framework (Bailey and Katchabaw [7]), algorithms (Hunicke [15]; Hao et al. [6]) etc.) and empirical studies (e.g., 

Rani et al. [14]; Orvis et al. [22] etc.), but they all use an ad-­‐hoc approach from a software design point of view. 

On the other hand, research on using software design patterns in video games is mostly limited to using video games 

as a means for teaching design patterns in undergraduate computer science courses (e.g., Gestwicki and Sun [23]; 

Antonio et al. [24]). In contrast, much work has been done towards game design patterns, such as the foundational 

work of (Björk and Holopainen [26]) and many others, but the focus has generally been on game design and not 

software design, which is a subtle, yet important distinction. Relying on the success of software design patterns 

in different software domains, we can say that game developers could benefit from both game design patterns and 

http://www.ijcrt.org/


www.ijcrt.org                                                     ©  2021 IJCRT | Volume 9, Issue 12 December 2021 | ISSN: 2320-2882 

IJCRT21X0015 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b223 
 

Class sensorClass = Class.forName(sensorName); 

Constructor sensorConstructor = sensorClass.getConstructor( new Class[]{ Object.class } ); 

Sensor sensor = (Sensor)sensorConstructor.newInstance( new Object[]{ object } ); 

software patterns for games. 

Ramirez and Cheng [11] presented 12 design patterns that could assist in enabling adaptability in a software 

system. These design patterns were developed through 

 

 

Monitoring Pattern 

The key purpose of ADD is to provide more enjoyment to a broader demography of players. Even though it seems 

that there should be a direct mapping from a player’s achievements to their enjoyment, the actual relationship is 

far more complicated. For example, high achievement with minimum effort can be boring for a hardcore player 

whereas low achievement with high effort can be frustrating for a novice player. Thus, before we dynamically adjust 

the difficulty level of a game, we need to know the player’s perceived level of difficulty which requires collecting 

data from the game at runtime. The monitoring pattern is used to provide a systematic way of collecting data while 

satisfying resource constraints, and provide those data to the rest of the ADD system. Examples of data to be 

collected include the player’s score, 
 

 

player’s life level, time spent on activities, inventory, number of enemies killed, amongst others. 
 

 
Figure 1: Sensor factory design pattern 

 
Sensor factory: Sensors are objects that periodically read data from the game4 and notify the rest of the ADD 

system. Sensor (please see Figure 1) is an abstract class which encapsulates the periodical collection and notification 

mechanism. It has the abstract method refreshValue() which child classes need to define. A concrete sensor realizes 

the Sensor and defines data collection and calculation inside the refreshValue() method. A concrete sensor may also 

override other attributes of the Sensor class. An example of a concrete sensor can be AverageScorePerLifeSensor, 

which reads score and number of life attributes from the game and divides the score by the number of lives. An 

example of overriding an attribute from the base Sensor class can be redefining the default monitoring interval. The 

SensorFactory class uses  
 

the “factory method” pattern to provide a unified way of creating any sensors. It takes the sensorName and the object 

to be monitored as input and creates the sensor. If the object is not specified, then it uses the default game object. In 

Table 2, we provide a code snippet that demonstrates how Java reflection can be used to create a sensor without 

using the constructor directly. As we can see, unlike traditional implementations of the factory method pattern, this 

implementation does not require modification when new ConcreteSensor classes are created. 

Table 2: Creating sensors using Java reflection 
 

 

It is good practice that the object will provide an appropriate interface so that it can be queried by the 

http://www.ijcrt.org/


www.ijcrt.org                                                     ©  2021 IJCRT | Volume 9, Issue 12 December 2021 | ISSN: 2320-2882 

IJCRT21X0015 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b224 
 

Class objectClass = object.getClass(); 

Field field = 

objectClass.getDeclaredField(“fieldName”); 

field.setaccessible(true); 

Object fieldValue = field.get(object); 

ConcreteSensor for the required attribute. If for some reason the object does not provide the required interface, then 

reflection can be used to bypass the access modifier (please see Table 3). 

Table 3: Bypassing access modifier using Java reflection 
 

 

Before creating a sensor, the SensorFactory checks in the Registry data structure to see whether the sensor has 

already been created. If created, the SensorFactory just returns that sensor instead of creating a new one. Otherwise, 

it verifies with a ResourceManager whether a new sensor can be created without violating any 

resource constraints. Usually, the underlying platform and/or development environment provides wrappers for 

resource monitoring. For example, the java.lang.Runtime class and java.lang.management package provide such 

functionality. 

Decision Making Patterns 

After collecting raw data using the monitoring pattern (i.e., sensor factory), the ADD system must interpret what that 

information means in the context of a particular game and which game elements need to be adjusted to what degree 

to provide the player with an appropriate level of difficulty. Two decision making patterns: adaptation detector and 

case based reasoning are discussed below, encapsulating the tasks of “when to adjust the game” and “what to adjust 

in the game and how to adjust?” respectively. 
 

 
Figure 2: Adaptation Detector design pattern 

 
Adaptation detector: With the help of the sensor factory pattern, the 

 

AdaptationDetector (please see Figure 2) deploys a number of sensors in the game 
 
 

and attaches observers5 to each sensor. Observer encapsulates the data collected from sensors, the unit of data, and 

whether the data is up-­‐to-­‐date or not. The unit of data represents the degree of precision necessary for each particular 

type of sensor data. For example, in a particular game, every tenth change in the player’s inventory might be worth 

noticing, compared to changes in the player’s remaining number of lives, which should be noted on each change. 

AdaptationDetector periodically compares the updated values found from Observers with specific Threshold values 

with the help of the ThresholdAnalyzer. Each Threshold contains one or more boundary values as well as the type of 

the boundary (e.g., less than, greater than, not equal to, etc.). Once the ThresholdAnalyzer indicates a situation when 

adaptation might be needed, the AdaptationDetector creates a Trigger with the information the rest of the ADD 

process might need. Trigger also holds book-­‐keeping attributes such as the trigger creation time and so on. For 

example, if the average score per life is less than a particular threshold, then it might indicate that an adaptation is 

necessary. Now to give a bigger picture, the Trigger may include contextual information, such as the number of 

enemies left, their average speed, etc. AdaptationDetector needs to make sure that it does not repeatedly create the 

http://www.ijcrt.org/


www.ijcrt.org                                                     ©  2021 IJCRT | Volume 9, Issue 12 December 2021 | ISSN: 2320-2882 

IJCRT21X0015 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b225 
 

same Trigger. 
 

 
 

 

 

 

 
 
 

Figure 3: Case based reasoning design pattern 

 
Case based reasoning: While the adaptation detector determines the situation when a difficulty-­‐adjustment is 

required by creating a Trigger, case based reasoning (please see Figure 3) formulates the Decision that contains the 

adjustment plan. As the name of the pattern suggests, this pattern is best suited to games where the difficulty 

adjustment logic can be defined as a finite number of cases. 

The InferenceEngine has two data structures: the TriggerPool and the FixedRules. FixedRules contains a number of 

Rules6. Each Rule is a combination of a Trigger and a Decision. The Triggers created by the adaptation detector will 

be stored in the TriggerPool. To address the Triggers in the sequence they were raised in, the TriggerPool should be 

a FIFO data structure. The FixedRules data structure should support search functionality so that when the 

InferenceEngine takes a Trigger from the TriggerPool, it can scan through the Rules held by FixedRules and find a 

Decision 

 

Reconfiguration Pattern 

Once the ADD system detects that a difficulty-­‐adjustment is necessary, and decides what and how to adjust the 

various game components, it is the task of the reconfiguration pattern to facilitate smooth execution of the decision. 

This task is non-­‐trivial  because  the  game  is  a  runtime  entity.  The  ADD  system  needs  to  adjust the game 

difficulty while the player is progressing through the game. If the adjustment is drastic, it can disturb the player’s 

immersion. Also, there is the risk of leaving the game in an inconsistent state. Below we discuss the game 

reconfiguration pattern, which provides a systematic approach to reconfigure the game. Traditionally the pattern 

was designed for a client-­‐server model. The reason we choose this pattern is because typically a video game is very 

analogous to a client-­‐server  model.  In  a  client-­‐server  model,  the  server  continuously  checks  in  a loop for 

requests from clients and responds to the requests when they arrive. 

Similarly, in a video game, the game logic continuously checks in a loop (i.e., the game loop) for inputs from input 

devices (such as the keyboard, mouse, gamepad, sensors, etc.) and behaves according to those inputs. 

Game reconfiguration: This pattern is based on the server reconfiguration pattern described in [11]. The server 

reconfiguration pattern assumes that the object that needs to be configured will implement a specific interface. With 

the help of the adapter design pattern, this assumption can be eliminated (as we show in Figure 4 and discuss 

hereafter). The AdaptationDriver receives a Decision selected by the InferenceEngine (please see case based 

reasoning in Section 4.2) and executes it with the help of the Driver. Driver implements the algorithm to make 

any attribute change in an object that implements the State interface (i.e., that the object can be in active or inactive 

states, and outside objects can request state changes). As the name suggests, in the active state, the object shows its 

http://www.ijcrt.org/


www.ijcrt.org                                                     ©  2021 IJCRT | Volume 9, Issue 12 December 2021 | ISSN: 2320-2882 

IJCRT21X0015 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b226 
 

usual behavior whereas in the inactive state, the object stops its regular tasks and is open to changes. 
 

 

Figure 4: Game reconfiguration design pattern 
 

 

The Driver takes the object to be reconfigured (default object used if not specified), the attribute path (i.e., the 

attribute that needs to be changed, specified according to a predefined protocol7) and the changed attribute value as 

inputs. The Driver requests the object that needs to be reconfigured to be inactive and waits for the inactivation. 

When the object becomes inactive, it reconfigures the object as specified. After that, it requests the object to be 

active and informs the AdaptationDriver when the object becomes active. When the game is in an inactive state, it 

will not be able to respond to the inputs it receives from the player through 

the input devices, but it should not discard those requests either because that might expose an unexpected behavior to 

the player. The GameState maintains a RequestBuffer data structure to temporarily store the inputs received during 

the inactive state of the game. The GameState overrides Game’s event handling methods and game-­‐loop to 

implement the State interface. When the GameState is requested to be INACTIVE, it is transferred to 

BEING_INACTIVE. While in the BEING_INACTIVE state,  the  game-­‐loop  finishes  its  current  execution  and  then  

goes  to  the  INACTIVE state. In the INACTIVE state, the game-­‐loop does not get executed. If the game is not in the 

ACTIVE state, inputs are stored in the RequestBuffer instead of being processed. When the game is requested to be 

ACTIVE, it is transferred to the BEING_ACTIVE state first. In the BEING_ACTIVE state, the inputs stored in the 

RequestBuffer are retrieved and processed. The game goes to the ACTIVE state from the BEING_ACTIVE state only 

after the Request Buffer becomes empty. The game can be requested to go to the INACTIVE state only at a time 

when it is in the ACTIVE state, and vice versa. It is important to note that in a reasonable implementation, all these 

changes can be done in less time than the game loop’s sleeping period after each execution and, consequently, these 

changes are not noticeable to the player. 

Integration of Patterns 

In  this  Section,  we  briefly  re-­‐discuss  how  the  four  design  patterns  discussed  in Sections 4.1, 4.2, and 4.3 work 

together to create a complete ADD system (please see Figure 5 and Table 4). 

 

Figure 5: ADD design patterns working together Table 4: Summary of ADD design 

patterns 

 
 

http://www.ijcrt.org/


www.ijcrt.org                                                     ©  2021 IJCRT | Volume 9, Issue 12 December 2021 | ISSN: 2320-2882 

IJCRT21X0015 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b227 
 

Design Pattern Role Interacts With 

Sensor factory Collecting data from the game Game, Adaptation detector 

Adaptation detector Deciding when to adjust the game Sensor factory, Case based 

reasoning 

Case based reasoning Deciding what to adjust in the game and 

how to adjust 

Adaptation detector, Game 

reconfiguration 

Game reconfiguration Implementing the adjustment Case based reasoning, Game 

 

 

The sensor factory pattern uses Sensors to collect data from the game so that the player’s perceived level of 

difficulty can be measured. The adaptation detector pattern observes Sensor data using Observers. When the 

adaptation detector finds situations where difficulty needs to be adjusted, it creates Triggers with appropriate 

additional information. Case based reasoning gets notified about required adjustments by means of Triggers. It finds 

appropriate Decisions associated with the Triggers and passes them to the adaptation driver. The adaptation driver 

applies the changes specified by each Decision to the game, to adjust the difficulty of the game appropriately, with 

the help of the Driver. The adaptation driver also makes sure that the change process is transparent to the player. 

In this way, all four design patterns work together to create a complete ADD system for a particular game. 

 

Chapter 5 Games 

Studied 
To date, we have used five games developed in Java for studying the design patterns described in Chapter 4. In our 

early work (please see studies 1 and 2; also reported in[12] and[27]), two casual prototypical games were used. The 

first game is a variant of Pac-­‐Man and was developed specifically for the purposes of our research. The second 

game, TileGame, is a slightly modified version of a platform game described in [28]. Even though we were 

successful in using the design pattern based approach in these two games, the code for these games was either written 

by ourselves or well documented and simple enough to be easily understood and reshaped accordingly. Thus, in a 

later study (please see Study 3; also reported in[29]) we have selected a commercially successful sandbox game – 

Minecraft8 [30] to extend our study. Also, we designed a class project, where a student used our designed pattern 

based approach to implement ADD in open source variants of two popular arcade games: Space Invaders and 

Tetris. In sections 5.1 to 5.6 below we briefly describe each of the games and examples of adaptations that 

were implemented.  In  sub-­‐section  5.7,  we  discuss  the  second  sub-­‐goal  “G2:  To  validate that the proposed design 

patterns provides a reusable solution for implementing ADD in video games”. 

Pac-­‐Man 

In this game, the player controls Pac-­‐Man in a maze (please see Figure 6). There are pellets, power pellets, and 4 

ghosts in the maze. Pac-­‐Man has 6 lives. Usually, ghosts are in a predator mode and touching them will cause the 

loss of one of Pac-­‐Man’s lives.  When  Pac-­‐Man  eats  a  power-­‐pellet,  it  becomes  the  predator  for  a  certain 

amount of time. When Pac-­‐Man is in this predator mode and eats a ghost, the ghost will go back to the center of 

the maze and will stay there for a certain amount of time. Eating pellets gives points to Pac-­‐Man. The player tries to 

eat all the pellets in the maze without losing all of Pac-­‐Man’s lives. The player is motivated to chase the ghosts 

while in predator mode, as that will benefit them by keeping the ghosts away from the maze for a time, allowing 

Pac-­‐Man to eat pellets more freely. Ghosts only change  direction  when  they  reach  intersections  in  the  maze,  

while  Pac-­‐Man  can change direction at any time. A ghost’s vision is limited to a certain number of cells in the 

maze. Ghosts chase the player if they can see them. If the ghosts do not see Pac-­‐Man, they try to roam the cells with 

pellets, as Pac-­‐Man needs to eventually visit those areas to collect the pellets. If the ghosts do not see either Pac-

­‐Man or pellets, they move in a random fashion. 
 

 

http://www.ijcrt.org/


www.ijcrt.org                                                     ©  2021 IJCRT | Volume 9, Issue 12 December 2021 | ISSN: 2320-2882 

IJCRT21X0015 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b228 
 

 
 
 

Figure 6: Screen captured from the Pac-­‐Man game 

 

 

 

 

 

 

 

 

Figure 7: Screen captured from the TileGame game 
 

TileGame 

The level structure and game-­‐play of this game is similar to the popular Super Mario game series. In this game, the 

player controls the player character in a platform world (please see Figure 7). There are three levels, each having 

different tile based maps. Each level is more difficult and lengthier than the previous level, but has more points to 

give the player a sense of progress and accomplishment. There are power ups and non-­‐player characters (i.e., 

enemies) in each level.  There are three different types of power ups: basic power ups, bonus power ups, and a goal 

power up. Basic power ups and bonus power ups give certain points to the player.   In each level there is one goal 

http://www.ijcrt.org/


www.ijcrt.org                                                     ©  2021 IJCRT | Volume 9, Issue 12 December 2021 | ISSN: 2320-2882 

IJCRT21X0015 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b229 
 

power up that can be found at the end of the level. The goal power up takes the player from one level to another.  

There are two different types of non-­‐ player characters: ants and flies. Ants and flies move in one direction and 

change direction when blocked by the platforms. The player character can run on and jump from platforms.  When 

the player character jumps on (i.e., collides from above) non-­‐ player  characters,  the  non-­‐player  character  dies.    If  

the  player  character  collides with  non-­‐player  character  in  any  other  direction,  then  the  player  character  dies 

instead. The player character has six lives. When the player character dies, it loses one life and the game restarts 

from the beginning of that level. The player character and ants are affected by gravity; flies are only affected by 

gravity when they die. In this game, three map variants were created for each level. For a particular level, the same 

objects were placed in the map but positioned slightly differently. One map variant was the default version and 

other two were easier and harder versions of the default map. 
 

Minecraft 

Minecraft [30] is an exceptionally popular sandbox game that allows players to explore, gather resources, combat, 

craft and build constructions out of textured cubes in a procedurally generated 3D world. The terrain of the game 

world, consisting of plains, mountains, forests, caves, and waterways, are composed of rough 3D objects (primarily 

cubes) representing different materials (e.g., dirt, stone, tree trunks, water, etc.) and arranged in a fixed grid pattern. 

Players can break (please see Figure 8) and collect these material blocks and craft these blocks to form other blocks 

(e.g., furnaces, bricks, stairs, etc.) and items (e.g., sticks, axes, buckets, etc.). Players can place collected or crafted 

blocks and items elsewhere to build structures. The world is divided into biomes (e.g., deserts, jungles, snow fields, 

etc.). The  time  in  the  game  goes  through  a  day-­‐night  cycle  every  20  real  time  minutes. There are various NPCs 

known as mobs (e.g., animals, villagers, hostile creatures, etc.). Non hostile animals (e.g., cows, pigs, chickens, etc.) 

spawn during the daytime and can be hunted for food and crafting materials. Hostile mobs (e.g., spiders, zombies, 

creepers (a Minecraft-­‐unique creature), etc.) spawn during nighttime and in dark areas. There are two primary 

game modes: creative and survival. In creative mode, players have access to unlimited resources, and are not 

affected by hunger or environmental or mob damage. On the other hand, in survival mode, players need to collect 

resources (and craft them) and have both a health bar and a hunger bar that must be managed to stay alive and 

continue playing. The game also features single player and multiplayer options. For this research, we focused on the 

single player option (please see Figure 8) played in the survival mode of the game. 
 

 

 
 

 

Figure 8: Screen captured from the Minecraft game 

 
While Minecraft is not open-­‐source, its source code can be readily obtained through the use of a toolchain [31] 

provided by an active and extensive developer community that decompiles the game back to its source code. This 

practice is accepted by the creators of Minecraft while an official modding interface is under development. 

 

 

 

 

 

http://www.ijcrt.org/


www.ijcrt.org                                                     ©  2021 IJCRT | Volume 9, Issue 12 December 2021 | ISSN: 2320-2882 

IJCRT21X0015 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b230 
 

Space Invaders 

Space Invaders is a two dimensional fixed shooter game9. In this game, the player controls a canon by moving it 

horizontally across the bottom of the screen and firing at invader alien ships descending from top of the screen. In the 

used variant, there are 24 alien ships organized in 4 rows (please see Figure 9). The player can shoot 
 

 
 

 

5 In fixed shooter games, (i) the level fits within a single screen, (ii) the protagonist’s movement is fixed to a 

single axis of motion, and (iii) enemies attack in a single direction (such as descending from the top of the screen). 
 

 

one missile at a time and he can only shoot the next one when the previous one hits an alien ship or the top of the 

screen. Each alien ship can randomly drop one bomb at a time until it is destroyed. It can only drop the next bomb 

when the previous bomb hits the player’s canon or the ground. The player starts with 5 lives and each time a bomb 

touches the player’s canon, one life gets decreased. To win the game, the player needs to destroy all the alien ships 

before losing all of his/her lives and the alien ships reach the ground. 
 

 

Figure 9: Screen captured from the Space Invaders game 

 

Tetris 

Tetris is a falling block puzzle game in which there are 7 different shapes (i.e., I, J, L, O, S, T and Z shapes – please 

see in Figure 10) called Tetriminos. Tetriminos are game pieces shaped like tetrominoes, geometric shapes 

composed of four square blocks each. A random sequence of Tetriminos fall down the playing field from the top 

of the screen. A player can control these shapes by moving them sideways or rotating them at 90 degree units, with 

the intention of creating horizontal lines of blocks without any gaps. Such lines disappear immediately as they form 

and all the blocks above that line fall by one line and the player earns points. The game continues until the stack of 

block reaches the top of the screen such that no new Tetriminos can enter. 

 

 

http://www.ijcrt.org/


www.ijcrt.org                                                     ©  2021 IJCRT | Volume 9, Issue 12 December 2021 | ISSN: 2320-2882 

IJCRT21X0015 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b231 
 

 

 
Figure 10: 7 Tetriminos (top) and Screen captured from the Tetris game (bottom) 
 

Adaptations Implemented 

In Table 5, we give examples10 of different adaptations that were implemented in these games. The first column 

shows the name of the game. The next three columns show the details of the adaptations implemented. Please note 

that these columns: metrics for sensors, attributes for modification and adaptation scenarios also represent the 

questions: when to adapt, what to adapt and how to adapt respectively, which is part of a possible way of eliciting 

essential requirements for an adaptive software [32]. 

Table 5: Examples of adaptation implemented 
 

G
a

m
e
 

 
Metrics for 

Sensors 

 
Attributes for Modification 

 
Adaptation Scenarios 

P
a

c
-­‐M

a
n

 Total score, 
Number of 

times player 

dies 

Ghost’s speed, the ghost’s 
vision length, duration of Pac-

­‐Man’s predator mode 

etc. 

Modify ghost’s speed, duration of Pac-
­‐Man’s predator mode etc. based on how 

the average score per life 

compares to specific thresholds 

T
il

e
G

a
m

e
 Current level 

number, Total 

score, Number of 

times player dies 

Load different versions of the 

map where default objects and 

enemies are placed in slightly 

different positions. 

Load different versions of the map when the 
player character goes to the next level or in 

the next loading of the same level (i.e., when 

the player character dies) based on scores 

and 

life lost in last level. 

M
in

e
c
r
a

ft
 

Which day in 
game, number of 

times 

player dies 

Display hints about 

collecting resources and 

building shelters 

If the player is continuously dying during 
the first night, give the player some hints to 

progress through the 

game to make it easier. 

Number of 
items of 

particular 

materials in 
players 

inventory 

 
 

Hardness of those particular items 

Modify the hardness of a particular 
resource in the game world as the player’s 

inventory of that particular item changes, 

making it easier or harder to collect the 
resource. 

 

 
 

6 Here, we discuss one or more non-­‐trivial examples from each of the games. Few more scenarios will be 

discussed in Chapter 6. Other trivial ones were intentionally left out, as they do not provide any additional value to 

this discussion. 
 

 
 

 

 

 
 
 

http://www.ijcrt.org/


www.ijcrt.org                                                     ©  2021 IJCRT | Volume 9, Issue 12 December 2021 | ISSN: 2320-2882 

IJCRT21X0015 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b232 
 

G
a

m
e
 

 
Metrics for 

Sensors 

 
Attributes for Modification 

 
Adaptation Scenarios 

T
e
tr

is
 

Average 
number of 

shapes falling 

between two 

rows being 
cleared 

 
Relative frequency ratio 

between desirable and 

undesirable shapes 

Give undesirable (please see section 

8.3 for details of the classification of the 

shapes) shapes to the player when he/she is 

clearing rows quickly and give desirable 

shapes for the opposite. 

Height of the 

stack 

 
Speed of the shapes 

Descend the shapes faster if the stack is not 
very high and decrease the speed if the 

stack is high. 

S
p

a
c
e
 I

n
v

a
d

e
r
s 

 
Alien ships’ 

height from the 

ground, number  

of alien ships 

remaining 

 

Alien ships’ speed towards 

ground 

Gradually increase or decrease the alien 

ships’ speed and player’s missile’s speed 
based on the remaining size of the alien 

force and their distance from the ground. 

 
 

Speed of player’s missile 

 
 

 

 

Reusable Solution across Multiple Games 

Design patterns are a general reusable solution for commonly occurring problems. Typically, design patterns are 

elicited by analyzing implemented solutions across multiple systems rather than being designed and thus their 

reusability as a solution does not need to be demonstrated. However, this general approach of eliciting design pattern 

is not applicable for our specific problem. Popular games such as “Max   Payne”,   “Half-­‐Life   2”   and   “God   Hand”   

use   the   concept   of   auto   dynamic difficulty. How ADD is delivered in these games from a gameplay perspective 

can only be discerned through reviewing these games or from official strategy guides (or, occasionally in 

presentations such as [9]). Unfortunately, given the highly competitive nature of the games industry, no information 

is publicly available about 

how ADD is implemented in these games from a software design perspective. There are no adequate open source 

examples of auto dynamic difficulty implementations to be analyzed. Thus, we have derived the necessary design 

patterns from the self-­‐ adaptive system literature in the context of ADD in video games (please see Chapter 4). In 

this chapter, we discussed five different games where the design pattern based approach was used to implement 

ADD. One of the games (i.e., Minecraft) among them is a highly successful sandbox game. Most adaptations that 

were implemented primarily  focus  on  modifying  attributes  of  the  game  (please  see  Pac-­‐Man  and Minecraft 

examples in Table 5) whereas others focus on content modifications (please see TileGame example of usage of 

different version of maps in Table 5). Thus, in this chapter, through empirical evidence (i.e., the usage of the 

design patterns to implement ADD in 5 different games), we have addressed our second sub-­‐goal  “G2:  To  validate  

that  the  proposed  design  patterns  provides  a  reusable solution for implementing ADD in video games”. 
 

 

 

 

 

 

 

 

 

 

 

 

http://www.ijcrt.org/


www.ijcrt.org                                                     ©  2021 IJCRT | Volume 9, Issue 12 December 2021 | ISSN: 2320-2882 

IJCRT21X0015 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b233 
 

Chapter 6 

Source Code and Process Reusability 

In [27], we examined, based on a case study involving Pac-­‐Man and TileGame, how the use of our design patterns 

as discussed in Chapter 4 impacted different software qualities of a game. One of the findings of that study was that, 

for small games such as Pac-­‐Man and TileGame, using these design patterns to develop ADD may result in more 

than 75% source code reusability. In this chapter, we want to examine whether our design pattern approach can be 

applied to a large commercial game such as Minecraft and to what extent the reusability quality of these patterns 

remain valid  (i.e.,  our  third  sub-­‐goal  “G3:  To  analyze  the  source  code  reusability  achieved through the usage of 

these design patterns to implement ADD in video games”). 

In Section 6.1 below, we describe the process of using our design patterns approach to develop an ADD system 

including examples from our work and existing literature (i.e., our fourth sub-­‐goal “G4: To define a concrete set of 

activities (possibly step-­‐by-­‐ step) needed for applying our design pattern based approach in video games”). The 

process was developed to formalize our experiences from [27] to assist in the ADD-­‐ enablement of larger games 

like Minecraft.  By taking a step-­‐by-­‐step methodological approach, a seemingly monumental task was accomplished 

without difficulty. A well-­‐defined  process  such  as  this  is  also  important  for  industrial  adoption  for several 

reasons such as measuring progress, planning, and automation. 

Process 

With our design pattern based architecture in hand, we can essentially follow a step-­‐ by-­‐step process to develop the 

rest of the system.   In this section, we describe that process. 

1) Define Sensors: Identify metrics to assess the skill of the player and the perceived level of difficulty based on 

failure and success rates. Examples of data to be collected for this purpose may include the player’s score, player’s 

life level, time spent on activities, inventory, number of enemies killed, and so on. There can be reactive and 

proactive metrics. Reactive metrics measure a player's performance based  on  success  or  failure  on  a  particular  

activity.  For  example,  for  the  Pac-­‐Man game,  we  used  an  average-­‐score-­‐per-­‐life  sensor.  On  the  other  hand,  for  

Minecraft, we have created sensors to monitor a player's inventory and current time of the world, which can be 

proactively used to predict whether the player will have enough resources to build a shelter before nightfall. These 

metrics can be identified intuitively (e.g., level completion time), as a design artifact of game play (e.g., amount of 

life remaining), or as described in specific algorithm or technique (e.g., average win rate of ghosts in Pac-­‐Man [6]). 

Furthermore, any analysis method such as plotting various attributes over time, using a debug mode, or analyzing 

log files can be helpful for identifying these metrics. 

2) Identify attributes to modify game difficulty: Identify attributes of the game that can be adjusted to modify the 

level of difficulty of the game. Here we provide examples of such attributes: 

a) Player character attributes: For example, the durability of items and the amount of damage the player 

experiences from hostile mobs’ attacks in Minecraft, or  the  duration  that  Pac-­‐Man’s  predator  mode  can  be  

increased  or  decreased  to modify the level of difficulty. 
 

b) Non-­‐Player  character  attributes:  For  example,  in  the  Pac-­‐Man  game,  the attributes of ghost speed, ghost 

vision length, and the amount of time that a ghost stays in the centre of the maze after being eaten by Pac-­‐Man in 

predator mode can be increased or decreased to change the game difficulty. 

c) Game world and level attributes: For example, in the TileGame game, loading different versions of the map can 

be used to modify game difficulty. For procedurally generated levels, either unexplored parts of the world can 

be generated to match player expertise (e.g., [38]) or attributes of already generated game world objects can be 

adjusted. For example, in Minecraft, the hardness of a particular type of block can be modified within a believable 

range to modify the difficulty of gathering that particular resource. 

http://www.ijcrt.org/


www.ijcrt.org                                                     ©  2021 IJCRT | Volume 9, Issue 12 December 2021 | ISSN: 2320-2882 

IJCRT21X0015 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b234 
 

d) Puzzle attributes: For example, in Minecraft, if the player fails to build a shelter in the first few nights, 

hints can be provided when daytime is drawing to a close. 

The techniques described in Step 1 can be used to identify these attributes as well. 

 

3) Identify adaptation scenarios: Identify game adaptation scenarios involving metrics and attributes identified 

from Step 1 and Step 2. Please note that this is more of a game design activity than a software design activity, as 

the focus is on adjusting elements of gameplay to optimize player experience. Thus, existing literature on game 

design (e.g., [8]) can provide great insight for this step. 
 

4) Define observers and thresholds: Define thresholds based on the scenarios identified in Step 3 for the sensors 

defined in Step 1, resolve any boundary value problems raised by the threshold definitions, and define observers to 

relate thresholds to sensors. Analysis techniques described in Step 1 can be used to find appropriate threshold values. 

Also, user trials can be useful here. 

5) Define triggers and adaptation detectors: Define triggers to represent each scenario, including any necessary 

contextual information with the trigger (for example,  in  the  TileGame  game,  a  trigger  representing  game-­‐world-

­‐too-­‐easy  may include map difficulty and speed of NPCs), and develop the adaptation detector logic based on the 

scenarios. 

6) Define decisions: Use attributes identified in Step 2 to create decisions to modify game difficulty according to 

the scenarios identified in Step 3. Please note that, existing literature on game difficulty can useful here. For 

example, Bostan and Öğüt [39], based on lessons learned from a number of role playing games, suggested using  a  

convex-­‐shaped  difficulty  curve.  Similarly,  Qin  et  al.  [19],  suggested  up  and down directions and a medium rate of 

difficulty change based on an experiment involving 48 participants using Warriors of Fate, an action game. 

7) Define rules: Define rules to relate triggers to decisions based on the adaptation scenarios. It is important to 

analyze any dependency between rules and take actions if there are any contradictions. For example, two rules 

should not be each other's preconditions. Techniques for analyzing correlations between two software artifacts, such 

as a traceability matrix, can be useful here. 

In Table 6, we show examples of artifacts produced during the first three steps of the process described above, 

when applied to Minecraft. Other artifacts from the process are very much code specific and are difficult to describe 

here. We present a source code analysis of all the artifacts in the next section.  

Source Code 

In Table 7, we show a reusability analysis of the source code of the ADD system that we have developed for 

Minecraft. In the first column, we show the class name or pattern name. In the second column we show the number 

of classes in each category (i.e., specified in column 1). In the next three columns we show the corresponding 

NOM, WMC and CBO values. In the sixth column we show the total logical SLOC in the ADD system for 

Minecraft. In the seventh column we show the reused  Logical  SLOC  (i.e.,  those  lines  that  remained  unchanged  

from  the  Pac-­‐Man and TileGame games) and the associated percentage.   In the last column we show the game-

­‐specific Logical SLOC (i.e., specific to ADD system for Minecraft and cannot be directly reused) and the associated 

percentage. For clarity, we combined certain rows of 100% reused classes within a particular pattern. In those cases, 

the maximum values of NOM, WMC and CBO were reported because the thresholds for these metrics are defined as 

upper bounds (please see the discussion below). After all of the rows of a particular class or pattern, we present a 

summary. The last row of the table is a summary across all the classes and patterns. 
 

 

1) Number of Methods (NOM): NOM is simply a count of the number of methods in a class, with 20 and 40 being 

the preferred and acceptable thresholds respectively [33]. We can see from the third column in 

Table 7, that the maximum number of methods in a class from our implementation is 10. 

2) Weighted Methods per Class (WMC): WMC [34] is a weighted sum based on complexity11 of each of the 

methods in a class and is defined as: 

n 

http://www.ijcrt.org/


www.ijcrt.org                                                     ©  2021 IJCRT | Volume 9, Issue 12 December 2021 | ISSN: 2320-2882 

IJCRT21X0015 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b235 
 

WMC = ∑Ci 

i=1 

Where n is the number of methods and Ci is the complexity of method i. The preferred and acceptable thresholds for 

these metrics are defined as 25 and 40 respectively [33]. We can see from fourth column in Table 7 that all the 

classes are within the acceptable thresholds and only two classes (i.e., Registry and Game State) are above the 

preferred threshold. 

3) Coupling between Objects (CBO): CBO [34] is the measure of number of classes to which a class is coupled. 

Two classes are coupled when methods declared in one class use methods or instance variables defined by the other 

class. We can see from fifth column in Table 7 that CBO of only two classes (i.e., Adaptation Detector and Inference 

Engine) are above the preferred threshold of 5 [33]. 
 

4) Amount of Reuse: We can see from Table 7 that SensorFactory, Sensor, Registry and ResourceManager classes 

in the sensor factory design pattern were completely reused across all three games. Similarly, classes for the 

Observer, Trigger, Threshold and ThresholdAnalyzer in the adaptation detector pattern were completely reused. 

Three classes (i.e., Rule, FixedRules and Decision) in the case based reasoning pattern, and three classes (i.e., 

Driver, AdaptationDriver and State) in the game reconfiguration pattern were also completely reused. Furthermore, 

the classes required to implement AdaptationDetector, InferenceEngine and GameState were partially reused. Only 

the concrete sensors (seven classes) and the concrete decisions (2 classes) were very specific to the game and could 

not be reused. 

As we discussed earlier, only two classes have WMC values above the preferred threshold and only two classes have 

CBO values above the preferred threshold. This is indicative of high source code reusability potential. For amount of 

reuse, we can see from the last row in Table 7, the ADD system for Minecraft contains 28 classes comprised of 808 

logical SLOC. Among these 808 logical SLOC, 600 logical SLOC (74.26%)12 are exactly the same as Pac-­‐Man and 

TileGame and thus are considered reusable. Only 208 (25.74%) logical SLOC are specific to the game. 
 

 
 

Table 7: Source code analysis of ADD design pattern implementation 
 

Class/ Pattern 

Name 

# of 

Classes NOM WMC CBO 
Logical SLOC 

Total Reusable (%) Specific (%) 

SensorFactory, 
Sensor, Resource 

Manager 

 
 

3 

 
 

9 

 
 

15 

 
 

3 

 
 

145 

 
 

145(100) 

 
 

0(0) 

Registry 1 10 27 2 73 73(100) 0(0) 

ConcreteSensors 7 4 10 1 64 0(0) 64(100) 

Sensor Factory 11  282 218(77.3) 64(22.7) 

Observer, Trigger, 
Threshold, 

Threshold Analyzer 

 
 

5 

 
 

8 

 
 

10 

 
 

2 

 
 

97 

 
 

97(100) 

 
 

0(0) 

AdaptationDetector 1 4 20 8 91 21(23.08) 70(76.92) 

Adaptation 

Detector 

 

6 

  

188 

 

118(62.8) 

 

70(37.23) 

Rule, Fixed Rules, 

Decisions 
 

3 
 

10 
 

10 
 

3 
 

75 
 

75(100) 
 

0(0) 

InferenceEngine 2 4 7 7 57 46(80.7) 11(19.3) 

ConcreteDecisions 2 2 2 0 22 0(0) 22(100) 

Case-­‐based 

Reasoning 

 

7 

  

154 

 

121(78.57) 

 

33(21.43) 

Driver, Adaptation 

Driver, State 

 

3 

 

4 

 

22 

 

3 

 

99 

 

99(100) 

 

0(0) 

GameState 1 10 27 1 85 44(51.8) 41(48.2) 

Game 

Reconfiguration 

 

4 

  

184 

 

143(77.7) 

 

41(22.3) 

Grand Total 28  808 600(74.26) 208(25.74) 

 

http://www.ijcrt.org/


www.ijcrt.org                                                     ©  2021 IJCRT | Volume 9, Issue 12 December 2021 | ISSN: 2320-2882 

IJCRT21X0015 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b236 
 

Overall, more than 70% of the logical SLOC required to implement the ADD systems are   considered   reusable.   

Previously,   in   the   Pac-­‐Man   and   TileGame   games   we experienced 77.52% and 79.68% code reusability [27], 

and so our findings with Minecraft are reasonably consistent with our prior experience. Considering that Minecraft is 

significantly larger and more complex than either Pac-­‐Man or TileGame, this further strengthens our confidence in 

the reusability benefits of our approach to ADD, and demonstrates significant potential for commercial applications. 
 

Summary 

In  this  chapter,  we  described  a  step-­‐by-­‐step  process  for  using  our  design  pattern based approach to develop an 

ADD system including examples from our work and existing literature. Following the process, we then carried out a 

source code reusability analysis using four metrics taken from the software metrics literature that are frequently used 

to analyze the reusability of source code. The results indicated that using these design patterns to develop ADD 

should result in a high degree of source code reusability. A repeatable process and source code reusability provide 

clear motivation for adopting our design pattern based approach to creating ADD in video games. 
 

 

Chapter 7 

Automation Framework 

We have enjoyed success in our initial works (i.e., Pac-­‐Man [12] and Tilegame [27]) in  enabling  ADD  in  simple,  

small,  proof-­‐of-­‐concept  casual  games.  In  these  cases, however, the code was either originally written by us or 

well documented and simple enough to be easily understood and reshaped accordingly. Applying our software design 

pattern based framework for ADD to a large commercial-­‐scale game such as Minecraft [30], on the other hand, 

seemed to be a daunting task, at least on the surface. Thus, the process described in Chapter 6 was developed to 

formalize our  experiences  from  using  them  in  Pac-­‐Man  and  TileGame  to  assist  in  the  ADD-­‐ enablement of 

larger games such as Minecraft. In practice, we found that applying such a methodical process enabled ADD in 

Minecraft quite readily, and that our framework was easily adapted for use in this rather foreign environment with no 

more significant changes than we found in our earlier work with much simpler games. This is a key motivation for 

our current work as concrete activities (such as the ones in section 6.1) are easier to build a tool upon. 
 

Table 8: Categorization of the ADD source code 
 

Category of source code SLOC % 

Completely reusable 600 74.26 

Specialization (Concrete Sensors (64) 

and Concrete Decisions (22)) 

86 10.64 

Instantiation (Adaptation Detector (70) and 

Inference Engine (11)) 

81 10.02 

Other logic 41 5.07 

Total 808  

Automation Framework 

Figure 11 depicts a high level decomposition of our semi-­‐automatic system. The key idea is to represent part of the 

ADD logic as a relational model which is mutable. The 

core software elements are divided into four components: (i) Collector and Executor, (ii) Enhancer, (iii) Manager, 

and (iv) Translator. The collector and executor component interfaces the relational model with the game in question. 

It collects meta-­‐information   from   the   game’s   source   code   as   well   as   runtime   logging information and 

passes that to the model. It can also execute modification instructions presented in the model. The manager 

http://www.ijcrt.org/


www.ijcrt.org                                                     ©  2021 IJCRT | Volume 9, Issue 12 December 2021 | ISSN: 2320-2882 

IJCRT21X0015 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b237 
 

component provides graphical user interfaces to easily manipulate the model. The enhancer component facilitates 

the decision making process (i.e., when, how and to what degree to modify the game). The purpose of the 

translator component is translating the relational model, when finalized, to executable software artifacts (i.e., source 

code). In the following subsections, we discuss each of these components in further detail. 

 
 

Relational Model: Central to the framework is a relational model, as all the other components use it as a repository 

for all of their information. This is essentially a storage for a set of objects and relations which represent much of the 

dynamic information (e.g., Sensor’s name, relations between sensors and attributes, etc.) for an intended ADD 

system as well as some meta-­‐information (e.g., attributes, logging information, etc.). The structure of the model is 

derived from the design patterns described earlier and is not dependent on the platform or genre of the video game. 

There should be appropriate APIs for other components to collect information from the model. Implementation 

choices for the relational model include databases, XML storage, file based data structures, amongst others. 

Collector and Executor: The collector and executor component interfaces the relational model with the game and 

thus should depend on the platform of the game. The collector needs to be configured with some base level objects 

(e.g., game world, player, enemies, inventory etc.). For the rest of the system to work, the collector needs to conduct 

a Breadth-­‐First Search (BFS) starting from those base level objects and populate the model with a list of 

attributes and related data types using a hierarchical storage method such as recursive relations. Many languages 

provide programmatic ways (e.g., Java reflection) to collect such information with ease. We have identified some 

key challenges regarding the implementation of the executor and the relational model: 

- Identifying the depth of the object hierarchy to search, 
 

- Representing relationships other than hierarchical ones and representing shared objects, 

- Representing any run time changes on the hierarchy. 

 

The executor can execute modification instructions presented as decisions in the model and the collector can collect 

more information based on those modifications. 

Manager: The manager is another generic component that does not need to be aware of the details of the rest of the 

system and the platform other than the relational model. It is a collection of graphical user interfaces and business 

logic to easily manage the relational model. 

Enhancer: The enhancer is also a generic component and only needs to interact with the model and thus can 

be implemented in any language and need not be aware of the game’s platform. It is a collection of tools that 

helps the game designer or developer to make decisions about which attributes to monitor, threshold values, which 

attributes to modify and to what degree, amongst others. It usually works on data collected by the collector. Here we 

give examples of such tools: 

 Statistical analysis: Such as factor and co-­‐relation analysis. 

 
 Graphical analysis: Such as curve fitting. 

 
 Machine learning: For example, in [40], Southey et al. described an active learning   based   semi-­‐automatic   

gameplay   analysis   tool.   The   tool   is   highly platform and game independent and interacts with game-­‐engine or 

frameworks 
 

like this one through an abstraction layer and mainly consists of a sampler, a learner and a visualizer component. The 

usage of the tool is demonstrated in commercial context (i.e., Electronic Art’s FIFA’99). 

Translator: The translator component needs to be aware of the platform of the video game and needs to generate the 

artifacts accordingly. It can either directly translate to source code or generate an intermediate marked up description 

suitable for other code generation tools. 

http://www.ijcrt.org/


www.ijcrt.org                                                     ©  2021 IJCRT | Volume 9, Issue 12 December 2021 | ISSN: 2320-2882 

IJCRT21X0015 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b238 
 

Proof-­‐of-­‐concept Prototype 

We  have  developed  a  web-­‐based  proof-­‐of-­‐concept  prototype  as  an  instance  of  the semi-­‐automatic  framework  

described  in  Section  7.1.  In  this  section,  we  briefly describe how each component of the framework was 

instantiated in the prototype. 

Relational Model: The relational model was realized using a MySQL[41] relational database. We have also created 

a REST API using PHP[42] to read and write on this database. All of the other components in the prototype interact 

with the database through this API. In Figure 12 we show the schema of the database. In Table 9, we show how 

different components of the framework interact with each table. As we can see, the sessions and session_attributes 

tables are for recording log information. Information in these tables are written by the Collector and read by 

Enhancer module for analyzing data. Information from all the other tables get translated to source code in some 

form. We will discuss these interactions in more details in the sections below. 
 

 

Table 9 : Interaction between each tables and other framework components 
 

Tables Written By Read By 

attributes Collector, 

Manager 

Enhancer, Manager, 

Translator 

sessions_attributes Collector Enhancer 

Sessions Collector Enhancer 

sensors, sensors_attributes, observers, 

observers_sensors, thresholds, 

observers_thresholds, triggers, rules, 

decisions, decisions_attributes 

Manager Manager, 

Translator 

http://www.ijcrt.org/


www.ijcrt.org                                                     ©  2021 IJCRT | Volume 9, Issue 12 December 2021 | ISSN: 2320-2882 

IJCRT21X0015 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b239 
 

 

 

Figure 12: Schema of the MySQL database for the relational model 
 

 

Collector: We have created a collector in Java for interacting with games implemented in Java. It has two sub 

components named ObjectInformationCollector and RunTimeInformationCollector. Given a base level object and a 

maximum depth, the ObjectInformationCollector recursively inspects all of the attributes of that object until it 

reaches to the maximum depth or finds primitive attributes (e.g., Integer, Boolean, etc.). While traversing, it records 

each attribute’s name, parent, data type, and object path (i.e., a dotted notation to reach from the base level object) in 

the attributes table. Given a set of attributes to monitor and frequency of monitoring, the 

RunTimeInformationCollector creates a session  

Manager: We have created the manager component using the ajaxCRUD [43] library which allows faster user 

interface creation using PHP [42] and Javascript [44] for CRUD (i.e., Create, Read, Update, and Delete) operations 

on a MySQL [41] database. Once the attributes are recorded by the Collector component, we can mark them to be 

monitored using the observe flag on the attributes table using this component. It also allows all the required use 

cases for manipulating the relational model. Below we discuss one example. For an extensive list of use cases, 

please see the user manual in Appendix B. 
 

The Manager facilitates creating a sensor, defining the frequency of monitoring (i.e., sensor_interval) for that sensor, 

and defining the function for calculating the value of the sensor (i.e., value). It also allows associating multiple 

attributes to a sensor. There are some built in functions that can be applied to these associations. For example,  in  

the  Pac-­‐Man  game,  there  is  an  array  ghost_speed[]  and  a  variable pacman_speed  to  hold  the  ghosts’  and  

pac-­‐man’s  speed  respectively.  If  we  are creating  a  sensor  PacManSufficientSpeed  to  know  whether  the  pac-

­‐man’s  speed  is more than all the ghosts’ speed or not, we will associate the ghost_speed[] and pacman_speed to the 

sensor using a MAX function (i.e., to calculate the maximum of a Collection) and no function respectively. In doing 

http://www.ijcrt.org/


www.ijcrt.org                                                     ©  2021 IJCRT | Volume 9, Issue 12 December 2021 | ISSN: 2320-2882 

IJCRT21X0015 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b240 
 

so, the value in the sensor should be pacman_speed > max_ghost_speed. 

Enhancer: For Enhancer, we have created two visualizations for visualizing the data collected by the Collector 

component. We used the Data Driven Documents [45] visualization library also known as d3js [46] created by the 

Stanford Visualization Group. We briefly discuss each of the visualizations below. 

1. Attribute Tree Visualization: In Figure 13, we show the number of attributes at different depths13 of the 

Tetris game collected by the Collector component. As we can see from the figure, the number grows very quickly, 

which makes it very difficult to locate an attribute from the list of all attributes to mark it for observing or 

association to other entities such as sensors or decisions. Thus, we have created this visualization where the attribute 

hierarchy is represented in a tree structure where nodes with children attributes can be expanded or collapsed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 13 : Number of attributes at different depths on the Tetris game 

 
In Figure 14, we show screenshot of the attribute tree visualization where all the attributes up to depth four are 

expanded for the Tetris game. 

2. Session Timeline Visualization: After we collect a list of attributes from the game using the Collector, we 

intuitively select some attributes for monitoring. Our intention is to use some of these attributes as sensors (to 

understand the level of difficulty that the player is facing), and then use the Collector again to monitor their value 

changes during a session. Now, from the raw collection of data, it is very difficult to understand whether our 

selection is useful or not. Thus, we have created another visualization (please see Figure 15) where value changes 

for multiple attributes in one session, or one attribute in multiple sessions, can be seen as line charts in a time line. 

5000 

4500 

4000 

3500 

3000 

2500 

2000 

1500 

4608 

1000 
576

 

500 

0 
1 15 17 9 72 

DEPTH FROM THE ROOT LEVEL OBJECT 

N
U

M
B

ER
 O

F 
A

TT
R

IB
U

TE
S 

http://www.ijcrt.org/


www.ijcrt.org                                                     ©  2021 IJCRT | Volume 9, Issue 12 December 2021 | ISSN: 2320-2882 

IJCRT21X0015 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b241 
 

 
 

 

 

Figure 14 : Screenshot of attribute tree visualization for the Tetris game 
 

 
 

 

 
       Figure 15 : Screenshot of a sample session timeline visualization 

http://www.ijcrt.org/


www.ijcrt.org                                                     ©  2021 IJCRT | Volume 9, Issue 12 December 2021 | ISSN: 2320-2882 

IJCRT21X0015 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b242 
 

 

 

Translator: We have created the Translator component using PHP. It interacts with the REST API to fetch the 

required data from the MySQL database and then generates corresponding Java source code. The code generation 

logic is often quite simple. For each Java class, we predefine the static parts of the code and the Translator injects the 

dynamic parts as necessary. In Table 10, we show the pseudo code for generating a sensor class in Java. In lines 1 to 

9, we print the Java class and constructor definition. In lines 8 and 9, we print the override for the refreshValue 

method (the parent Sensor class periodically calls this method to get the updated value)  and  the  exception-­‐handling  

block  for  accessing  different  attribute  values.  If there are some attributes attached to the sensor (line 10), in lines 

11 to 13, we print the declaration for accessing those attributes. In lines 14 to 31, we print the logic for calculating 

any functions attached to the attribute such as MAX, MIN, AVG and so on. In lines 32 and 33, we print the overall 

value calculation for the sensor. The rest of the  lines  are  for  ending  the  exception-­‐handing  block,  and  

method  and  class declaration. Please see Appendix C for the actual PHP code of all the sub components of 

Translator. 

Table 10 : Pseudo code for generating sensor class in Java 
 

Executed PHP Code Printed Java Code Injected Data Value 

 

1. public class <sensor_name> extends Sensor{ 

 
2. public <sensor[name]>(Object object){ 

3. this.object = object; 

4. this.fieldName = "<sensor[name]>"; 

5. this.setInterval(<sensor[interval]>); 

6. this.setValue(0); 7. } 

 

8. public void refreshValue(){//Java method declaration starts 

 

 

 
9. try{ // Java try block starts 

10. if(sensor[attributes]!=""){ // PHP external if block starts 

11. foreach(sensor[attributes] as attribute){ // PHP foreach block-­‐1 starts 

12. <attribute[data_type]> <attribute[name]> = <attribute[attribute_path]>; 

13. } // PHP foreach block-­‐1 ends 

 
14. foreach(sensor[attributes] as attribute){ // PHP foreach block-­‐2 starts 

15. if(attribute[function]!="NONE"){ //PHP internal if block starts 

16. <attribute[element_data_type]> <attribute[name]><attribute[function]> = 0; 

 

17. for(int i = 0; i < <attribute[name]>.length; i++){ // Java for loop starts 

18. if(attribute[function]=="SUM" || attribute[function]=="AVG"){ 

19. <attribute[name]><attribute[function]> = <attribute[name]><attribute[function]> + 

<attribute[name]>[i]; 

20. } 

21. elseif(attribute[function]=="MAX"){ 

22. <attribute[name]><attribute[function]> = Math.max(<attribute[name]><attribute[function]> , 

<attribute[name]>[i]); 

23. } 

24. elseif(attribute[function]=="MIN"){ 

25. <attribute[name]><attribute[function]> = Math.min(<attribute[name]><attribute[function]> , 
<attribute[name]>[i]); 

26. } 

 

27. if(attribute[function]=="AVG"){ 

28. <attribute[name]><attribute[function] = <attribute[name]><attribute[function]> / 

<attribute['name']>.length; 

29. } 

30. }// Java for loop ends 

31. } // PHP internal if block ends 

http://www.ijcrt.org/


www.ijcrt.org                                                     ©  2021 IJCRT | Volume 9, Issue 12 December 2021 | ISSN: 2320-2882 

IJCRT21X0015 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b243 
 

 

32. double value = <sensor[value]>; 

33. this.setValue(value); 

34. }//PHP for each block-­‐2 ends 

35. }//Java try block ends 

36. catch(Exception ex){ // Java catch block starts 

37. System.out.print("Exception in Sensor: <sensor[name] >:"+ex.getMessage()); 

38. this.setValue(0); 

39. }//Java catch block ends 

 
40. }//PHP external if block ends 

41. }//Java method declaration ends 

 

42. }//Java class declaration ends 

 

Please note that the prototype described in this section is just a proof of concept and does not define the limits of 

the actual framework described in Section 7.1. 
 

Prototype Usage 

Here we discuss how the prototype can be used to create ADD logic for a game: 

 

1. Configure the Collector component so that it can collect information from the game. In our experience, it was 

only a few lines of code changes to pass the game object as a parameter to the Collector. 

2. Run the ObjectInformationCollector to obtain all the attributes up to a certain depth inthe game (please see 

Figure 13 and related discussion in Section 7.2 on growth of number of attributes with the depth). 

3. Intuitively select attributes for monitoring and mark them to be observed using the observe flag from the 

Manager (using the Attribute Tree Visualization to help locate the intended attributes). In doing so, we can attempt 

to select two types of attributes: 

a. Potential attributes for sensors: These are the attributes that shows how much difficulty the player is facing but 

cannot be easily modified (modification of these attributes usually seems unfair to the player). For example, the 

score of the player, number of lives remaining, and so on. 

b.  Potential attributes for decisions: These are the attributes that can be modified to make the 

game more difficult or easier to the player. For example, the map of the game, speed of the enemies, and so on. 
 

 

4. Run the RunTimeInformationCollector and let different players play the game multiple times and record those 

sessions. Another option is to create different bots14, each representative of different class of players such as 

beginner, intermediate, expert, and so on, and let the bots play the game. 

5. Use the Session Timeline Visualization to narrow down the number of attributes for the sensors. Use the 

Manager to define sensors. Associate each sensor to one or more attributes. 

6. Use the Manager to define observers and mark them either as generic or not generic using the is_generic flag. 

Generic observers can be only associated with one sensor and its corresponding source will be generated by the tool, 

whereas the custom observers (those marked as is_generic=false) can be associated to multiple sensors, but the 

developer will have to code the observer definition later with the same name as used in the Manager. Use the 

Session Timeline Visualization to identify the boundary values of when the adaption should take place. Define 

Thresholds based on the boundary values. 

7. Define  Triggers  and  associate  them  to  observer-­‐threshold  combinations  using the Manager. 
 

 

8. Define decisions and associate one or more attributes to each decision using the Manager. In each association, 

http://www.ijcrt.org/


www.ijcrt.org                                                     ©  2021 IJCRT | Volume 9, Issue 12 December 2021 | ISSN: 2320-2882 

IJCRT21X0015 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b244 
 

define the modified attribute values (using the Session Timeline Visualization to identify what modification should 

take place). 

9. Define rules as associations between triggers and decisions using the Manager. 

 

10. Generate source codes for Sensors, Adaptation Detector, Inference Engine, and Decisions using the Translator. 

Place the generated code with the game’s original source code and make any additional modifications. Configure the 

game to use this adaptation logic. 

We used our framework to recreate the ADD scenario we have implemented earlier for the TileGame. We generated 

source code for one sensor class, three decisions class, the AdaptationDetector class and the InferenceEngine class 

(please Appendix E for the generated source code). We used the GameState class that we have implemented during 

our initial work on the TileGame. We only needed few lines of code (please see Table 11) to integrate the generated 

source code with the game. 

Table 11: Custom source coded to integrate the framework generated source code to an existing 

game 

 
 

 

  

11. Build the game and resolve any build errors. Once the game is built, run the 

RunTimeInformationCollector and let different players or bots play the game. 

12. Repeat step-­‐3 to step-­‐11 above until satisfied with the result of the adaptations. 

 

Summary 

In  this  chapter,  we  presented  a  semi-­‐automatic  framework  that  would  assist  in applying our design pattern 

based approach. It also reduces developer effort by generating source code for some of the artifacts. We discussed 

different components of the framework and corresponding implementation choices. Additionally, we discussed  a  

proof-­‐of-­‐concept  prototype  that  we  have  implemented  to  realize  the framework. 

TileGameState tileGame = new TileGameState(); 

AdaptationDriver adaptationDriver = new AdaptationDriver(tileGame); 

GameInferenceEngine inferenceEngine = new GameInferenceEngine(adaptationDriver); 

inferenceEngine.start(); 

SensorFactory sensorFactory= 

new SensorFactory(tileGame, new ResourceManager(), new Registry()); 

AdaptationDetector adaptationDetector = 

new AdaptationDetector(inferenceEngine, sensorFactory); 

adaptationDetector.start(); 

tileGame.run();          

   

http://www.ijcrt.org/


www.ijcrt.org                                                     ©  2021 IJCRT | Volume 9, Issue 12 December 2021 | ISSN: 2320-2882 

IJCRT21X0015 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b245 
 

Chapter 8 

Preliminary User Study 

In our initial work, we used our design pattern based approach to implement auto dynamic difficulty in three 

different games; two of them are prototypical in nature and one of them is a commercial game. Regardless, in all of 

these studies, the primary researcher played the role of the game developer. This raises the concerns of whether these 

design patterns are useful for a developer without prior knowledge of them and how much effort it would take for a 

developer to gain sufficient familiarity to make effective and efficient use of them. Thus, we conducted a preliminary 

user study where a Post-­‐Degree Diploma student at the University of Western Ontario voluntarily participated. This 

study was a course project for the student and he was not involved with this particular research prior to the study. In 

this chapter, we will discuss this study in detail. 
 

Study Artifacts 

In this section, we briefly discuss each of the input and output artifacts. The following artifacts were provided to the 

student at the beginning of the study: 
 

 

 Open Source Games: Two open source games (i.e., Tetris and Space Invaders) from[47] were provided to the 

student. The task was to introduce auto dynamic difficulty to those games. We did not provide any restrictions on the 

kinds of modifications that could be done to the game. The adaptation scenarios to be implemented were also left 

open ended and unspecified. 

 Base Level Implementation: The base level implementation that we have found to be reusable across 

different games (please see section 6.2) was provided to the student. In Appendix D, we include examples from 

this implementation. 

 Programmer’s Manual: A programmer’s manual showing example usage of the design patterns was provided to 

the student. In Appendix A, we include the complete programmer’s manual. 

 Research Papers: To make the participant familiar with the design patterns, one of our published research paper 

(i.e., [29]) was provided to the student. 

 Survey Questionnaire: A survey questionnaire comprising 10 questions was provided to the participant. The 

questionnaire had three different types of questions related to the developer, the games, and the experience of using 

the design patterns. 

At the end of the study, the following artifacts were collected from the participant: 

 

 Completed Implementations: The completed ADD implementations on top of the originally provided open 

source games were collected. 

http://www.ijcrt.org/


www.ijcrt.org                                                     ©  2021 IJCRT | Volume 9, Issue 12 December 2021 | ISSN: 2320-2882 

IJCRT21X0015 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b246 
 

 

 

 Completed Survey Questionnaire: Two copies of the completed survey questionnaire, each based on one of 

the games, were collected. 

 Critical Review: The participant was asked to provide a critical review of the design patterns and the base 

level implementation based on his experience. 

 Developer Log: A brief description of the activities and associated effort to implement the adaptations 

scenarios on top of the games. 
 

 

Results and Interpretations 

We asked the participant about how easy or difficult it was to use each of the design patterns. The participant’s 

response was collected on a five-­‐level Likert scale where 1 means extremely easy and 5 means extremely difficult. 

In Table 16 and Table 17, we show participant’s rating of ease of usage of each of the design patterns based on his 

experience of applying them to the Tetris and the Space Invaders games respectively. Please note that working with 

the Tetris game is the student’s first exposure to the design patterns whereas in the Space Invaders game he is 

applying them for the second time. 

Table 16 : Ease of usage of each of the design patterns on the Tetris Game 
 

 

Design Patterns 
Ease of usage (1= extremely easy; 5 = extremely difficult) 

1 2 3 4 5 N/A 

Sensor factory X      

Adaptation detector   X    

Case-­‐based reasoning X      

Game reconfiguration   X    

 

 

Table 17 : Ease of usage of each of the design patterns on the Space Invaders game 

 
Design Patterns 

Ease of usage (1= extremely easy; 5 = extremely difficult) 

1 2 3 4 5 N/A 

Sensor factory X      

Adaptation detector   X    

Case-­‐based reasoning X      

Game reconfiguration X      

The Sensor factory and case-­‐based reasoning patterns were consistently rated as 1 (i.e., extremely easy to use) for 

both the games. The adaptation detector and game reconfiguration patterns were rated as 3 (i.e., moderately 

easy/difficult) based on the experience of applying them in the Tetris game. Among them, the rating of the game 

reconfiguration pattern has improved after applying the patterns in the Space Invaders game. The rating of the 

adaptation detector pattern remained the same at 

3. We have verified that these ratings match with the descriptions in the critical review document which will be 

discussed later in this section. 

Next,  we  present  the  effort-­‐related  information  collected  from  the  critical  review document. We have also 

verified that it matches with the information provided in the developer notes document. 

http://www.ijcrt.org/


www.ijcrt.org                                                     ©  2021 IJCRT | Volume 9, Issue 12 December 2021 | ISSN: 2320-2882 

IJCRT21X0015 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b247 
 

General Praise (6) 

10% 

10% 30% 
Specific Strength (6) 
 
Critical Feedback (4) 

20% 
Red Flags (2) 

30% Improvement 
Suggestions (2) 

Table 18 : Effort spent of implementing ADD in the Tetris and the Space Invaders games 

Design Pattern 
Implementation Time (HH:MM) 

Tetris Space Invaders 

Sensor factory 1:35 1:00 

Adaptation detector 2:00 1:45 

Case-­‐based reasoning 0:30 0:30 

 

 

Game reconfiguration 2:40 0:00 

Post development testing and 

debugging 

4:00 0:05 

Total 8:45 3:20 
 

Lastly, we discuss the participant’s critical feedback about the design patterns and the base level implementations. In 

Figure 16, we show a summary of participant’s feedback. Each feedback item is categorized into one of the 

following five types: general praise, specific strength, improvement suggestion, critical feedback, and red flags. The 

general praise and specific strengths were related to the design patterns whereas the improvement suggestions, 

critical feedback, and red flags were related to the base level implementation as summarized by the participants on 

his own words: 

One of the greatest strengths of this framework is the modularity. This separation of various aspects of the 

framework make it easier to focus on one aspect at a time— simplifying the task at hand, and reducing the learning 

curve required. Not only can each aspect of the framework be learnt and understood in progressive steps, but 

decisions regarding the implementation and integration of the framework can be analysed and addressed in 

progressive steps as well. 

Many of the obstacles to the learnability of the framework were unrelated to the framework itself, but rather a 

product of issues with the implementation and documentation used.” 
 

 
Figure 16 : Summary of participant’s feedback about the design patterns and base level 

implementation 

We will not discuss the feedback in the general praise and the specific strength section as they do not call for any 

further action from our end. We will discuss the feedback from the other three categories here: 

Red-­‐flags: 

 

1. Partial implementation in the adaptation detector: In the base level implementation provided to the participant, 

the adaptation detector class in the adaptation detector pattern is partially implemented. We acknowledge this as a 

deficiency of our base level implementation and a source of confusion.        We    have    already    incorporated    the    

participant-­‐provided suggestion of declaring that class as an abstract class and leaving the developer to extend from 

there (this approach is more in par with our other base level classes and has already been used in the sensor factory 

and the case based reasoning pattern). 

http://www.ijcrt.org/


www.ijcrt.org                                                     ©  2021 IJCRT | Volume 9, Issue 12 December 2021 | ISSN: 2320-2882 

IJCRT21X0015 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b248 
 

2. Non-­‐descriptive   exceptions:   Some   of   the   exceptions   in   our   base   level implementation are not 

descriptive and do not provide enough contextual information. We acknowledge it as a deficiency of our base level 

implementation and are currently revising our code to address it. 

Critical feedback: 

 

1. Implementation order in adaptation detector: The adaptation detector class requires referencing code segments 

that are completed later. This accounted for confusion during the first scenario implementation in the Tetris game. 

We believe this issue can be overcome by “programming to an interface”. Also, our semi automation framework17 

(please see Chapter 7) can help manage this logic. 

2. Implementation order in case based reasoning: The participant implemented the decisions after the inference 

engine and raised concern against this implementation order. Indeed we have already suggested a different 
 

 
 

15 The proof-­‐of-­‐concept for the semi automation framework was under development during this preliminary user 

study and thus could not be used here. We recognize the potential of a similar user study involving the framework in 

the future. implementation order in the step by step process described in [29]. We take as an action item from this 

feedback to document our suggested implementation order in the source code as well. 

3. Applicability of game reconfiguration pattern: The game reconfiguration pattern is very different from the other 

three patterns, as it does not contain much adaptation logic. On the contrary, it creates the foundation to push 

changes to the game from the case based reasoning pattern. Also, the participant noted that the implementation logic 

was directly transferrable to another game and thus should be part of the base level implementation. We 

acknowledge that this pattern requires a lot of boilerplate coding and for each game needs to be only 

implemented once in most cases. That said, we differ on the opinion of this logic being part of the base level 

implementation. The participant managed to port the implementation from the Tetris to the Space Invaders game as 

they both used similar threading and input handling techniques (a plausible reason for this could be that both of them 

were implemented by the same developer), which might not be true for games using different Java libraries for those 

purposes. 

4. Incremental complexity in adaptation detector pattern: The participant noted that the complexity of the 

adaption detector dramatically increases with the number of sensors and if the adaptation scenarios are interrelated. 

We consider this problem analogous to a system having a large number of potentially interrelated requirements 

and thus a traceability matrix and other validation techniques can help to mitigate this issue. 

Improvement suggestions: 

 

1. Adding typical modifications scenarios in decisions: The participant suggested that typical adjustments such as 

increment and decrement can be incorporated in the generic decision class to decrease the amount of custom code. 

2. Analysis tools for finding threshold boundaries: The participant found it very time consuming to find the 

appropriate boundaries for threshold values. In our  semi-­‐automatic  framework,  we  have  a  module  called  enhancer  

(please see Chapter 7) that encompasses such a task. The proof-­‐of concept prototype also provides ways for basic 

analysis such as plotting based on user logs. 

Summary 

In this Chapter, we reported on a preliminary user study where the participant, without any prior knowledge of our 

design pattern based approach and minimal experience of working with design patterns in general, managed to 

implement two scenarios in each of the two games provided with minimal effort (about 12 hours). The participant 

provided a detailed feedback of his experience about using the design patterns and their base level implementation. 

We also conducted a survey on the participant for a quantitative rating of his experience and other complementary 

information. We also presented our analysis of his feedback. 
 

http://www.ijcrt.org/


www.ijcrt.org                                                     ©  2021 IJCRT | Volume 9, Issue 12 December 2021 | ISSN: 2320-2882 

IJCRT21X0015 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b249 
 

 

Chapter 9 

Conclusions 
In this chapter, we highlight our contributions, discuss implications for using a design pattern based approach for 

ADD, and list some possible future research directions. Finally, we conclude the thesis with some final remarks. 
 

Key Contributions 

We derived four software design patterns namely, Sensor Factory, Adaptation, Detector,  Case-­‐based  Reasoning,  

and  Game  Reconfiguration  from  the  self-­‐adaptive system literature in the context of auto dynamic difficulty 

(ADD) in video games. We have created a generic base level implementation of these design patterns in Java. We 

have applied the design pattern based approach and the base level implementation to three different games – Pac-

­‐Man, TileGame and Minecraft. Based on our experience from the first two games, we provided a step-­‐by-­‐by 

process for applying the design pattern based approach in a video game and verified the process by applying the 

process while developing ADD for Minecraft. We carried out a source code analysis on the implementations of ADD 

in these games for measuring reusability and amount of reuse. Through the analysis we found that reusability 

metrics such as number of methods (NOM), weighted methods per class (WMC), and coupling between objects 

(CBO) indicated high reusability of our base level implementation and the amount of reuse can be as high as 

74.26%, even for commercial  games  like  Minecraft.  We  described  a  code-­‐generation  based  semi-­‐ automatic 

framework that can be used to easily apply the design pattern based approach in a game with minimal manual effort. 

Additionally, we implemented a proof-­‐of-­‐concept  prototype  based  on  the  framework  and  tested  the  integration  of 

the prototype with multiple games. We also conducted a preliminary user study where   a   Post-­‐Degree   Diploma   

student   at   the   University   of   Western   Ontario voluntarily participated. The student was not involved with this 

particular research before the study and still he managed to apply the design pattern based approach to create ADD 

in two popular arcade style games: Space Invaders and Tetris. 

Implications 

In this section, we discuss the benefits of using a design pattern approach for implementing ADD in video games 

based on our work and their implications: 

A) Reusable Source Code: Reusability refers to the degree to which existing applications can be reused in new 

applications. Since design patterns provide a reusable solution, it is expected that reusable source code can be 

created for such solutions as well. In [27], we reported an empirical investigation involving source code analysis of 

two prototypical Java games (i.e., Pac-­‐Man and TileGame). In that study, we noticed 77.52% and 79.68% code 

reusability  in  Pac-­‐Man  and  TileGame  respectively  while  implementing  the  adaptive systems using these design 

patterns. In Chapter 6, we have extended this study to a commercially acclaimed game (i.e., Minecraft [30]) and 

experienced comparable results. 600 SLOC (i.e., 74.26% in Minecraft; 79.68%   in   TileGame,   and   77.52%   in   

Pac-­‐Man)   of   the   adaptive   system remained unchanged across all three games. Reusability of source code reduces 

implementation time and increases the probability that prior testing has eliminated defects. 

B) Repeatable Process: In the design pattern based approach, since the high level structure of the solution is 

already known, it is possible to create a step-­‐ by-­‐step  method  for  creating  ADD  in  video  games.  From  our  

experience  on developing  ADD  for  Pac-­‐Man  and  TileGame,  we  formalized  such  a  process and applied it on 

the Minecraft game. A well-­‐defined process such as this is also important for industrial adoption for several 

reasons such as measuring progress, planning, and automation. Furthermore, developers can focus more on game 

play design and ADD logic design rather than implementation details. Unlike ad-­‐hoc approaches, a well-­‐defined 

process is repeatable with consistent results across various games. 

Since the process is defined in a step-­‐by-­‐step method with specific artifacts expected as outputs from each step, it 

will be possible to define specific metrics to estimate the project size and later measure the progress as the project 

moves forward. 
 

 

C) Impact on Quality Factors: In [27], we examined how different software quality factors are impacted by the 

http://www.ijcrt.org/


www.ijcrt.org                                                     ©  2021 IJCRT | Volume 9, Issue 12 December 2021 | ISSN: 2320-2882 

IJCRT21X0015 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b250 
 

usage of these design patterns. We have already discussed the impact on reusability (please see Section 6.2). We 

briefly discuss the impact on few other quality factors below. 

Integrability: Integrability refers to the ability to make the separately developed components of the system work 

correctly together. As we can see in Figure 5, the integration points among the design patterns and with the game are 

clearly defined. Because of these clearly defined integration points, the four design patterns can be integrated with 

each other and a game easily. 

Maintainability: Maintainability refers to the ease of the future maintenance of the system.   As discussed earlier, 

different parts of the design patterns have specific concerns (e.g., Sensors will collect data, Drivers will make 

changes to the game, etc.), and so the resulting source code will have high traceability and maintainability. 

Furthermore, as the use of these design patterns provides source code reusability (please see Section 6.2), this will 

increase the probability that prior testing has eliminated defects while being used in a new game. 

D) Automation: In Chapter 7, we described a framework that will guide the developers through the process of 

applying the design patterns. It is essentially a semi-­‐automatic tool that will help developers to easily integrate a 

game into the tool and then identify metrics for sensors, identify attributes to adjust game difficulty, maintain 

traceability between these artifacts, and so on. Such a framework works as motivation for adopting a new approach. 

The proof-­‐of-­‐concept for the framework is validated through a prototype. 
 

Future Directions 

In this section, we briefly discuss some possible future directions for our research: 

 

A) Achieving Adaptive Gameplay: So far we have used these design patterns for implementation of a specific type 

of adaptability in video games known as auto dynamic difficulty. In principle, however, these design patterns should 

be sufficient to implement more complex forms of adaptability in game-­‐play for other  purposes.  Figure 17 

depicts  our  position of  a  multidimensional adaptive game-­‐play. For example, we have chosen two aspects of the 

game to adjust adaptively. One is level structure and puzzle attributes, and the other is combat difficulty. There are 

a number of rules and other associated artifacts (i.e., sensors, observers, triggers and decisions) focused on each of 

these aspects. In a scenario with a particular level structure and puzzle attributes with minimum combat difficulty, 

the player may experience a maze type game, whereas with a high combat difficulty and simple level structure and 

puzzle attributes, the player may experience a fighting game. Nearly every aspect of a game can be made adaptive in 

this way: the game world (structural elements, composition); the population of the world (the agents or characters in 

the world); any narrative elements (story, history, or back-­‐story); game-­‐play (challenges, obstacles); the 

presentation of the game to the player (visuals, music, sound); and so on. 
 

 

 

 

Figure 17: Concept of multi-­‐dimensional adaptive gameplay 
 

 

http://www.ijcrt.org/


www.ijcrt.org                                                     ©  2021 IJCRT | Volume 9, Issue 12 December 2021 | ISSN: 2320-2882 

IJCRT21X0015 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b251 
 

B) Achieving ADD in Multiplayer Games: To date, we have used these design patterns for implementation of 

ADD in single player games. Recently, Baldwin et al. [49] presented a classification framework for ADD in 

multiplayer games and, by applying that framework, found that many modern multiplayer games use some sort of 

ADD. To the best our knowledge, no existing scientific literature reports how to achieve ADD in multiplayer games. 

One of the key challenges for ADD system for a multiplayer game would be to provide different treatments to 

different players based on their expertise and still appear unbiased and fair. Our future plan is to extend (if 

necessary) and apply the design pattern based approach in a multiplayer game to achieve ADD. The multiplayer 

version of Minecraft would be a plausible test bed for such experimentation. 

C) Further Empirical Studies: During our related work review, we noticed a number of studies where the 

researchers provided the implemented game to some external players and investigated their experience (e.g.,[18], 

[13], [19] etc.). We did not find any empirical study in ADD literature where the researchers provided their 

implemented artifacts to external developers and empirically investigated their experience about further developing 

with the help of those artifacts. We performed one such study in Chapter 8. Such studies are important as they 

provide more insight into applying those artifacts outside laboratory. We would like to conduct more such 

studies with more participants, including experienced developers from industry. We would also like to use the semi 

automation framework (please see Chapter 7) 
 

 

for such a study. Additionally, we want to experiment on developers applying our design pattern based approach in 

platforms other than Java. The empirical  research  methods  for  such  a  study  can  be  case-­‐study,  controlled 

experiments, focus groups, and so on. 

Concluding Remarks 

Design patterns are a formal approach of describing reusable solutions for a design problem. Game developers can 

benefit from two types of design patterns: game design patterns and software design patterns for video games. While 

popular commercial  games  such  as  “Max  Payne”,  “Half-­‐Life  2”  and  “God  Hand”  use  the concept of auto 

dynamic difficulty, no information is publicly available about how ADD is implemented in these games from a 

software design perspective. Furthermore, research in this area has largely been done in an ad-­‐hoc fashion and is 

therefore not reusable or applicable to other games. In this thesis, we presented a design pattern approach for 

implementing ADD in video games. We validated our approach through multiple case studies. We discussed 

benefits of adopting this approach based on results from our empirical investigations. Additionally, we have 

developed process and automation tools for applying this approach. We have also provided details of our research 

execution process and analysis tools used. We encourage other researchers to take advantage of our design pattern 

based approach and/or any other research artifacts. 
 

References 

 
[1] A. Glassner, Interactive Storytelling: Techniques for 21st Century Fiction, A K Peters, Ltd., 2004. 

 

[2] D. Charles and M. Black, "Dynamic Player Modelling: A Framework for Player-­‐ Centered Digital Games," in 

International Conference on Computer Games: AI, Design and Education, 2004. 

 

[3] B. Pfeifer, "Creating Emergent Gameplay with Autonomous Agents," in Game AI Workshop at AAAI-­‐04, 

2004. 

 

[4] B. Reynolds, "How AI Enables Designers," 2004. [Online]. Available: http://gamasutra.com/php-

­‐bin/news_index.php?story=11577. [Accessed 16 July 2014]. 

 

[5] B. Snow, "Why most people don't finish video games," 17 August 2011. [Online]. Available: 

http://www.cnn.com/2011/TECH/gaming.gadgets/08/17/finishing.videoga mes.snow/. [Accessed 13 April 2014]. 

 

[6] Y. Hao, S. He, J. Wang, X. Liu, J. Yang and W. Huang, "Dynamic Difficulty Adjustment of Game AI by 

http://www.ijcrt.org/
http://gamasutra.com/php-
http://gamasutra.com/php-
http://www.cnn.com/2011/TECH/gaming.gadgets/08/17/finishing.videoga


www.ijcrt.org                                                     ©  2021 IJCRT | Volume 9, Issue 12 December 2021 | ISSN: 2320-2882 

IJCRT21X0015 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b252 
 

MCTS for the game Pac-­‐Man," in Sixth International Conference on Natural Computation (ICNC), Yantai, 

Shandong, 2010. 

 

[7] C. Bailey and M. Katchabaw, "An experimental test bed to enable auto-­‐ dynamic difficulty in modern video 

games," in 2005 North American Game-­‐On Conference, 2005. 

 

[8] E. Adams, Fundamentals of Game Design (2nd Edition), New Riders, 2010. 

http://www.ijcrt.org/

