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 1.  INTRODUCTION 

            Let   Γn= {P = ( npppp ,...,, 321 ); ip > 0, 1
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ip }, n≥2, be the set of all complete finite discrete 

probability distributions. Csiszár [2, 3] introduced a generalized measure of information using   f-divergence 

measure  
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             Where f :( 0,∞) →R (set of real numbers) is a convex function. Most common choices of function f 

satisfy f (1) = 0, so that .0),( QPC f
 Convexity of function f ensure that divergence measure ),( QPC f  

is 

nonnegative. An important characteristic of this divergence measure is that many known divergences can be 

obtained from this measure by appropriately defining the convex function f. [Shannon (1958), Renyi (1961), Ali 

& Silvey (1966), Vajda (1972), Berbea & Rao (1982a, b), Taneja (1995), Kumar & Chhina (2005), Kumar & 

Johnson (2005) and many more]. 
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   Further, these information divergence measures are used to find out distance or affinity between two 

probability distributions. Non parametric divergence measures give the amount of information supplied by the 

data for discriminating in favor of a probability distribution              P = npppp ...,,, 321  against another Q =

 nqqqq ...,,, 321 ,where P, Q n  .The construction of information divergence measure for two distinct 

probability distributions is not an easy task. 

   In this research work, we are introducing a new theoretic based non-parametric exponential information 

divergence measure which fits to the category of Csiszár’s f divergences [2, 3].     

      In unit 2; we discuss some advantageous inequalities. New exponential information divergence measure is 

achieved in unit 3. In unit 4, we have resulting some information inequalities for the new exponential 

information divergence measure in terms of some recognized and valued divergence measures. Some numerical 

illustrations of new exponential information measure are shown in unit 5. Unit 6 concludes the paper. 

 For shortness, we will denote ii qp , and 


n

i 1

by qp, and  respectively. 

    During past years P. Kumar and other [4, 5] has contributed a lot of work providing different kinds of 

information, bounds on the distance and divergence measures. His existing information divergence measures 

are as follows. 
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P. Kumar and A. Johnson [4] 
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2. WELL KNOW INEQUALITIES  

   In this section, we give some well-known inequalities which are established in literature of pure and applied 

mathematics. Using following inequalities we have derived important bounds of well-known divergence 

measures 
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                         0},exp{1  xxx                                                                       (2.3) 

                          0},exp{  xxx                                                                         (2.4) 

 

3. NEW EXPONENCIAL INFORMATION DIVERGENCE MEASURE  

          Now, we consider the function  ,0:f ℝ given by 
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And thus the information divergence measure: 
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And  
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The function f (t) is convex since    0 tf  for all t > 0 and normalized also since f (1) = 0. 

 

 

Figure 1: Graph of the convex function f (t). 

Figure 1, Shows the behavior of the function𝑓(𝑡) and which is continuously convex. Thus the measure is 

nonnegative and convex in the pair of discrete probability distributions   nQP , . 

4. BOUNDS FOR ),( QPD  

      We now develop information inequalities providing bounds for ),( QPD in terms of the recognized 

information divergence measures in the following propositions. 

Proposition 4.1: Let  QPD ,  and  QPM , be defined as (3.2) and (1.6) respectively and the symmetric 

2 -divergence 
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 Then inequality  

                                   ,,,, QPDQPMQP                                                             (4.2) 

Holds and equality, iff P = Q. 

Proof:  Consider the Harmonic (HM) and Geometric mean (GM) inequality, 

  

                                                              HM GM                                                                

                              Or,                       ,
2

pq
qp

pq



 

                             or,                      ,
22

2













 




pq

qp

pq

qp
 

                           or,           
     

  23

2222

2 pq

qp

pq

qpqp 



,                                                       (4.3) 

Further, for       x > 0, 

                       exp {x} > 1, 

                    Thus for,    ,0,1010 
q

p
qandp  

                                          
q

p
exp1 , 

                      Or,           
 

 

 
 

 
q

p

pq

qp

pq

qp
exp

22
23

222

23

222





 

                                             (4.4) 

 Now, from (4.3) and (4.4), we get 
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  Summing over all terms we get, 
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Therefore, we get 
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http://www.ijcrt.org/


www.ijcrt.org                      © 2017 IJCRT | International Conference Proceeding ICCCT Dec 2017| ISSN: 2320-2882 

International Conference On Communication & Computational Technologies by RIET, Jaipur &  IJCRT.ORG 2017 

IJCRTICCC046 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 300 

 

   Hence, the inequality.             

Proposition 4.2: Let    QPDandQPS ,,   be defined as (1.3) and (3.2), respectively. Then inequality  

                                 QPDQPS ,,                                                                                       (4.5) 

And equality holds for QP   

Proof:  From inequality (2.1) and (2.4), we get, 
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Hence, the required inequality, 

                           QPDQPS ,,  . 

Proposition 4.3: Let      QPandQPMQPD ,,,,   be defined as (3.2), (1.6) and (4.1), respectively. 

Then inequality 
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Now, from (4.9) and (4.10), we get 
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         Arranging in appropriate forms and summing over all terms, we get 
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Using (4.1), (1.6), and (3.2), we get  
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Proposition 4.4: Let      QPMandQPMQPD ,,,,   be defined as (3.2), (1.6) and (1.7), respectively. 

Then inequality 
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Holds and equality iff P =Q. 
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Further, from (3.2) and (4.6), we get 
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 From (1.6) and (1.7), we get  
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From (4.14) and (4.15), we get inequality (4.11). 

 

5. NUMERICAL ILLUSTRATION 

In this section, we consider an example of symmetrical probability distributions. We will numerically verify the 

bounds achieved in the earlier section. For this, we calculate measures 

       .,,,,,,, QPandQPSQPMQPD 

  

      Let P be the binomial probability distribution for the random variable X with parameter       (n = 8, p = 0.5) 

and Q its approximated normal probability distribution. 

                               Table 5.1 Binomial Probability Distribution (n = 8, p = 0.5)         

X 0 1 2 3 4 5 6 7 8 

 xp  0.0040 0.0310 0.1090 0.2190 0.2740 0.2190 0.1090 0.0310 0.0040 

 xq  0.0050 0.0300 0.1040 0.2200 0.2820 0.2200 0.1040 0.0300 0.0050 

 
 xq

xp
 

0.8000 1.0333 1.0481 0.9955 0.9716 0.9955 1.0481 1.0333 0.8000 

 

The divergence measures         :,,,,,,, areQPandQPSQPMQPD 
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These numerical values of measures verified the propositions of previous section.  

 

6. CONCLUSION 

During past years Dragomir [20-25], Teneja [11-13 and 19], Kumar and others [4, 5] gave the idea of 

divergence measures, their properties, bounds and relations with other measures. Kumar and other did a lot of 

work especially in the field of information theory. In [4, 5], he derived new bounds in terms of different 

symmetric and nonsymmetric divergence measures. We have introduced a new exponential nonparametric 

divergence measure, in the Csiszár’s f-divergence category [2, 3], by considering a convex function f, defined 

on  ,0 . This paper also defines the bounds and properties of new exponential information measure with the 

work of Kumar’s divergence measures and some other well-known measures. 
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