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Abstract: 

 The health effects of air pollution endanger human lives, 

especially among the at-risk population and those who suffer from 

respiratory illnesses. Hence the detection and monitoring of air 

pollution becomes necessarily important. Given the exorbitant cost 

of putting highly precise air pollution monitors throughout a city is 

quiet expensive.. In contrast to previous machine learning studies 

that primarily focus on pollutant estimation based on single day-time 

images, our proposed deep learning model integrates ResNet with 

Long Short-Term Memory , extracting spatial-temporal features of 

sequential images taken from smartphones instead for estimating air 

pollution using high equipped sensors and other sophisticated 

euipments.. In this study, logistic regression is used to determine 

whether or not a data sample is polluted. Based on prior PM2.5 data, 

auto regression and other extracted features, ResNet is used to 

predict PM2.5 levels. Knowing the level of PM2.5 in the coming 

years, months, or weeks allows us to reduce it to a safe level. This 

proposed work aims to determine air quality level based on data set 

of camera images taken from a specific city in various time intervals. 

Keywords— Air pollution, Autoregression, Deep Learning, 

ResNet (Residual Network) 

I. INTRODUCTION  

Particulate matter can be created by humans or exist 

naturally. Dust, ash, and sea-spray are just a few examples. 

Particulate matter (including soot) is produced when solid and 

liquid fuels are burned for power generating, home heating, 

and automobile engines. Particulate matter comes in a variety 

of sizes (i.e. the diameter or width of the particle). PM 2.5 

refers to the mass of particles having a diameter of less than 

2.5 micrometres (m) per cubic metre of air [13]. Fine 

particulate matter (PM2.5) is another name for PM2.5 (2.5 

micrometres is one 400th of a millimeter). Fine particulate 

matter‘(PM2.5) is noteworthy in the pollutant index because 

it poses a considerable health risk to individuals when levels 

in the air are elevated  

 

[1]. PM2.5 is a term that refers to very small particles. PM2.5 

is used to describe microscopic particles in the air that limit 

visibility and make the air appear hazy when concentrations 

are high. On the basis of a dataset containing daily 

atmospheric conditions, various machine learning models 

have been used to detect air pollution and predict PM2.5 

levels. Dan Wei [2] used Bayes classification and support 

vector machine methods to achieve the lowest possible error 

in air quality prediction in Beijing. José Juan Carbajal et al.[4] 

proposed a fuzzy inference method for performing parameter 

classification utilizing a reasoning process and combining 

them into an air quality index. The problem is simplified to a 

binary classification due to the ambiguity of the particular 

number PM2.5 level. , which divides PM2.5 levels into two 

categories: "high" (> 115 ug/m3) and "low" (less than 115 

ug/m3). The number is based on the Air Quality Level 

standard, which defines 115 ug/m3 as mild pollution [2]. 

Based on AQI, existing systems [2, 4, 14, 15] identify the air 

quality of a specific city specified by the user and categorize 

it as acceptable, satisfactory, moderate, poor, extremely bad, 

or severe (Air Quality Index). The information is presented 

monthly, weekly, or daily. Furthermore, once the numbers 

have been anticipated, they do not change in response to a 

sudden change in the weather or an unexpected rise in traffic. 

The values are detected for the entire city and cannot be 

verified for the accuracy of predetermined values. There are 

apps that show the PM2.5 levels in real time, and others that 

present the forecast for a specific day. PM2.5 readings for 

dates following a week, on the other hand, are not predicted. 

Based on a data collection of atmospheric conditions in a 

certain city, this system uses machine learning models to 

detect and predict PM2.5 levels. The proposed system 

accomplishes two goals, based on supplied atmospheric 

variables, detects PM2.5 levels and predicts PM2.5 levels for 

a specific date. To determine if a data sample is polluted or 

not polluted, logistic regression is used. Based on prior PM2.5 

data, auto regression is used to predict future PM2.5 levels. 

The major purpose is to use ground data to anticipate air 

pollution levels in the city. 
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II. RELATED WORKS 

When taking a photograph, PM2.5 can impact the 

light scattering coefficient [3] because it obscures the 

landscape and distorts the sky, reducing visibility [5]. 

Estimating pollution levels using smartphone photos is useful 

since it enables for quick capturing of any changes in air 

pollution levels. The traditional machine learning method 

correlates ambient light scattering coefficients with PM2.5 

levels. To estimate scattering coefficients from single photos, 

the haze-image model 11] was commonly used. From pure 

sceneries with light-scattering effects, this model learns how 

to construct observed images (haze-images). When taking a 

photograph, PM2.5 can impact the light scattering coefficient 

[19] because it obscures the landscape and distorts the sky, 

reducing visibility [22]. From pure sceneries with light-

scattering effects, this model learns how to construct observed 

images (haze-images). Some investigations used the dark 

channel model [12] in combination with the haze-image 

model to determine light coefficients directly from single 

photos [23], and Yang and Chen [14] used relative humidity 

to improve pollution estimation. 

Liu et al. [7] and Zhang et al. [8] extracted picture attributes 

such as image entropy, contrast, and saturation for further 

improvement, as opposed to [33], [14]. Liu et al. [7] used 

Support Vector Regression (SVR) to predict PM2.5 

concentrations using the haze-image model and extracted 

picture attributes. To assess air quality, Zhang et al. [8] made 

good use of multi-kernel learning. Similar features were 

employed by Liu et al. [9], who used a linear least square 

regression to estimate PM2.5 values from smartphone photos. 

Liu et al. [9] utilized a linear least square regression to predict 

PM2.5 values and used comparable features. Gu et al. [10] 

created a picture-based predictor instead of employing 

fundamental image attributes. Non-linear mapping was 

utilized to estimate PM2.5 values based on the overall 

likelihood of naturalness using the entropy information from 

the picture saturation map. Similar elements were adopted by 

Liu et al. [9]. 

III. METHODOLOGY 

Regression analysis is a statistical technique for 

determining the relationship between two or more variables. 

Typically, researchers want to know if independent factors Y 

have a causal effect on dependent variables. Xi .When 

applying the model to forecast y for a certain set of xi values, 

we get., we'd like to have a look at how large the forecast's 

mistake might be All of these components, both dependent 

and independent, A regression analysis includes variables and 

errors, and the resulting forecast equation is typically referred 

to as a regression model In air pollution forecasting, 

regression analysis is a fundamental technique. 

In the field of statistical methods, linear regression serves a 

solely utilitarian purpose. Its meaning is as follows: 

𝑌 = 𝑏0 + 𝑏1𝑥 + 𝑒    (2) 

A multiple-linear regression (MLR) model is given as:  

𝑌 = 𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥2 + ⋯ + 𝑏𝑖𝑥𝑖 + 𝑒 (3)   or: 

𝑌 = 𝑏0 + ∑ 𝑏𝑖𝑥𝑖 + 𝑒𝑖
𝑛
𝑖=0     (4) 

 Y =𝑏0 concentration expected at time t + 1, in air pollution 

forecasting represents 𝑥𝑖 pollutant concentrations and climatic 

factors at time t, and bi represents the regression coefficients.e 

is an estimated error factor derived from independent random 

sample coefficients. A least squares error technique can be 

used to calculate 𝑏𝑖.The dependent variable is Y, the 

independent variables are x and𝑥𝑖, the regression coefficients 

are b and bi, and the error is e. It has a normal distribution 

with a mean of 0 and a standard deviation of 0.Y denotes the 

pollutant. 𝑏𝑖Nonlinear regression analysis is an extension of 

the linear regression analysis, as well as the structural model 

of a traditional econometric analysis. In the social reality of 

economic life, many relationships between the analysis and 

forecast are generally used in nonlinear regression methods 

instead of a linear relationship. In the classical regression 

analysis, solving the nonlinear regression problem requires 

the conversion of variables to a linear relationship and the use 

of linear regression theory to determine the regression 

coefficients. This method has been widely used for many 

years in practice. General nonlinear regression models can be 

written in the following form: 

𝑌 = ∅(𝑥1, 𝑥2 … 𝑥𝑚, 𝛽1, 𝛽2, … 𝛽𝑟) + 𝜀      (5) 

The cluster algorithm is used to find relationships between 

PM10 and meteorological variables and then used multilayer 

regression to forecast the concentration of PM10. The results 

show that meteorological variables are important in air 

pollution forecasting. 

A. ARIMA Methods 

The autoregressive integrated moving average (ARIMA) 

model is a linear model that can show steady state in both 

stationary and non-stationary time series. When constructing 

the ARIMA model, there are three main steps given below, 

Step 1. Tentative identification 

 Step 2. Parameter estimation  

Step 3. Diagnostic checking  

ARIMA with a seasonal difference is called SARIMA. 

SARIMA processes the data with a seasonal period length S; 

and if d and D are non-negative integers, the difference series, 

Wt = (1 − B)d(1 − B 5 ) Dxi , is a stationary autoregressive 

moving average process . The SARIMA model can be written 

as: 

∅𝑝(𝐵)∅𝑝(𝑊𝑠)𝑊𝑡 = 𝜃𝑞(𝐵)Θ𝑄(𝐵𝑠)𝜀𝑡 

 t = 1, 2... N             (6)  

where N is the number of observations up to time t; B is the 

backshift operator defined by B αWt = Wt−α; ∅𝑝(B) = 1 − 

∅1B − . . . − ∅𝑝𝐵𝑝 is called a regular (non-seasonal) 

autoregressive operator of order p; 

 ∅𝑝 (𝐵𝑠) = 1 − ∅𝑝𝐵𝑠− . . . − ∅𝑝𝐵𝑝𝑠 ps is a seasonal 

autoregressive operator of order p; 

 θq(B) = 1 –𝜃1B − . . . − θq𝐵𝑞  is a regular moving average 

operator of order q;  

Θq(𝐵𝑠) = 1 − Θ𝐵𝑠 − . . . − Θ𝑄(𝐵𝑄𝑆) is a seasonal moving 

average operator of order Q; In the definition above, p 

represents the autoregressive term; q is moving average order; 

P represents the seasonal period length of the model, S, of the 

autoregressive term; Q represents the seasonal period length 
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of the model, S, of moving average order; D represents the 

order of seasonal differencing; and d represents the order of 

ordinary differencing. When fitting a SARIMA model to data, 

the estimation of the values of d and D is primary, with the 

orders of differencing needed to make the series stationary 

and to remove most of the seasonality. The values of p, q and 

Q need to be estimated by the autocorrelation function (ACF) 

and partial autocorrelation function (PACF) of the differenced 

series and other parameters can be estimated by suitable 

iterative procedures 

B. Deep Learning 

Deep Learning is an area of machine learning that is 

concerned with algorithms inspired by the structure and 

function of data. Artificial neural networks are a type of brain 

function [10]. Machine learning became more powerful as the 

amount of data increased. In terms of performance, techniques 

are insufficient, and Deep learning improves performance in 

areas such as accuracy. There are several modeling techniques 

appropriate for air pollution prediction in deep learning. 

LSTM (Long short term memory) method is the mostly used 

one for this purpose 

IV.  RESNET ARCHITECTURE 

The primary advantage of a highly deep network is 

that it can represent extremely complicated functions. It can 

also learn features at a variety of  

 

Fig. 1. ResNET Architecture 

abstraction levels, ranging from edges (at shallower layers 

closer to the input) through more sophisticated features (at the 

deeper layers, closer to the output). However, due of the 

vanishing gradient problem, very deep neural networks are 

difficult to train. When the gradient is back-propagated to 

older layers, the repeated multiplication operations cause the 

gradient to become endlessly tiny. When a result, as the 

network depth increases, its performance saturates or even 

decreases rapidly. This topic inspired the residual network 

(ResNet), which enables the construction of robust deep 

convolutional neural networks. The main idea of the ResNet 

model is the residual blocks, whose architecture is shown in 

Figure 4. The residual block provides two paths for the input: 

the main path and the shortcut (or more commonly known as 

skip-path). The main path provides the normal flow as with 

any convolutional neural network. Still, the shortcut skips N 

convolution layers (in our approach N = 2) and provides its 

input to the following convolution layer. The authors in argue 

that stacking layers should not degrade the network 

performance because one could simply stack identity 

mappings (layers that learn the identity mapping which 

ultimately does not make any change) upon the current 

network, and the resulting architecture would perform 

equally. This indicates that the deeper model should not 

produce a training error higher than its shallower counterparts. 

They hypothesize that letting the stacked layers fit a residual 

mapping is easier than letting them directly fit the desired 

underlying mapping. 

A. Residual Block: 

The residual block explicitly allows the model to 

perform this task .The basic residual block is also known as 

the identity block. This block corresponds to the case where 

the input activation has the same dimension as the output 

activation. Apart from this block, there is another block called 

the convolutional block. The architecture of this block is 

shown in Figure 1. In this block, the input and output 

dimensions do not match. The difference between this block 

and the identity block is that there is a convolutional layer in 

the shortcut path to match the dimensions .The ResNet 

model's overall architecture (Figure 1) consists of numerous 

convolutional and identity blocks. It also includes convolution 

and max pooling layers in the model's beginning, as well as 

flatten and dense layers at the conclusion to generate the final 

prediction. Better results can be produced by utilizing this 

model, which can be explained by the fact that much deeper 

networks that can learn complicated features and are not 

influenced by the problem of vanishing gradient can be 

employed. The emergence of ResNet or residual networks, 

which are made up of Residual Blocks, has relieved the 

challenge of training very deep networks. The first difference 

we notice is that there is a direct link that bypasses several 

levels (which may vary depending on the model) in between. 

This connection is known as the ‘skip connection,' and it lies 

at the heart of residual blocks. Because of this skip link, the 

layer's output is no longer the same. Without this skip link, the 

input 'x' is multiplied by the weights of the layer that comes 

after it. Next, this term goes through the activation 

function, f () and we get our output as H(x). 

H(x) =f (wx + b)  

Or H(x)=f(x) 

Now with the introduction of skip connection, the output is 

changed to 

H(x)=f(x)+x 

There appears to be a slight problem with this approach 

when the dimensions of the input vary from that of the 

output which can happen with convolutional and pooling 

layers. In this case, when dimensions of f(x) are different 

from x, we can take two approaches: 
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1. The skip connection is padded with extra 

zero entries to increase its dimensions. 

2. The projection method is used to match 

the dimension which is done by adding 1×1 

convolutional layers to input. In such a case, the 

output is: 

H(x)=f(x)+w1.x 

Here add an additional parameter w1 whereas no additional 

parameter is added when using the first approach. The skip 

connections in ResNet alleviate the problem of 

disappearing gradient in deep neural networks by enabling 

the gradient to flow through an additional shortcut channel. 

Another way these connections aid is by allowing the 

model to learn the identity functions, ensuring that the 

higher layer performs at least as well as the lower layer, if 

not better. A shallow network and a deep network that use 

the function H to convert an input 'x' to an output 'y' (x).The 

deep network must perform at least as well as the shallow 

network, without degrading performance as we with simple 

neural networks (without residual blocks). One method is 

for additional layers in a deep network to learn the inputs, 

preventing them from degrading identity function, such 

that their output equals performance even with extra layers. 

It has been demonstrated that residual blocks make it 

extremely simple for layers to learn identity functions. The 

formulas above demonstrate this. The output of plain 

networks is a shallow network and a deep network. 

H(x)=f(x),So an identity function, f(x) must be equal to x 

which is grader to attain whereas in case of ResNet, which 

has output: 

H(x)=f(x)+x 

f(x)=0 

H(x) =x 

Initialize f(x) =0 which is easier and get x as output which 

is also input. In the best-case scenario, extra layers of the 

deep neural network can better approximate the mapping 

of 'x' to output 'y' than its shallower equivalent, reducing 

error by a large margin. As a result, we anticipate ResNet 

to outperform traditional deep neural networks. Using 

ResNet greatly improved the performance of neural 

networks with more layers, as seen by the plot of error 

percent when compared to neural networks with simple 

layers. Clearly, the difference is significant in networks 

with 34 layers, where ResNet-34 has a substantially lower 

error percentage than plain-34. Also, we can observe that 

the error percentage for plain-18 and ResNet-18 is nearly 

identical. Using ResNet has considerably improved the 

performance of neural networks with more layers. 

B.. Vanishing Gradient Problem: 

This isn't a big deal for a shallow network with 

only a few layers that use these activations. However, if 

more layers are utilized, the gradient may become too small 

for training to be successful. Back propagation is used to 

find neural network gradients. Simply put, back 

propagation finds the network's derivatives by moving 

layer by layer from the final to the start layer. The 

derivatives of each layer are multiplied down the network 

(from the final to the start) by the chain rule to compute the 

derivatives of the original layers. When n hidden layers 

utilize an activation such as the sigmoid function, the n tiny 

derivatives are multiplied together. As a result, the gradient 

diminishes exponentially as we descend to the original 

layers. When n hidden layers utilize an activation such as 

the sigmoid function, the n tiny derivatives are multiplied 

together. As a result, the gradient diminishes exponentially 

as we descend to the original layers with a small gradient, 

the weights and biases of the initial layers will not be 

efficiently updated with each training session. Because 

these first layers are frequently critical to recognizing the 

main aspects of the incoming data, it can lead to overall 

network inaccuracies. The most straightforward answer is 

to utilize other activation functions, such as ReLU, which 

do not produce a small derivative. Another option is to use 

residual networks, which provide direct links to preceding 

layers. As shown in Image 2, the residual connection adds 

the value at the start of the block, x, to the end of the block 

(F(x)+x). This residual connection avoids activation 

functions, which "squash" the derivatives, resulting in a 

greater total derivative of the block. Finally, batch 

normalization layers may be able to fix the problem. As 

previously indicated, the issue emerges when a vast input 

space is transferred to a tiny one, leading the derivatives to 

vanish. This is particularly visible when |x| is large. Batch 

normalization solves this problem by simply normalizing 

the input so that |x| does not reach the sigmoid functions 

outside edges. It normalizes the input so that the majority 

of it falls in the green region, where the derivative isn't too 

small, as seen in Figure 2. 

 

Fig. 2. Problem of vanishing gradient 
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V. IMPLEMENTATION 

The complete dataset consists of 178,992 images, 

where 80% of the images are taken for training the models, 

15% of the images are for testing, and 5% for validating. We 

decided to use a smaller percentage for validation and testing 

datasets because we have a bigger dataset, and using this 

approach, we can leverage the large amount of data for 

training purposes. The validation dataset was used for hyper-

parameter tuning, where a grid search approach was used. The 

hyper-parameters tuned are: learning rate, batch size, and 

optimizer used. Our proposed models have incorporated 

pollution data and weather information for the last two 

years .The air pollution data is collected from the API 

endpoints of pulse.eco (https://pulse.eco). The API 

provides information about different sensors and different 

pollutants at different timesteps. The timesteps are 

irregular, so the data is aggregated hourly for each sensor. 

Every row consists of weather information, timestamp (date 

and time), the pollutant type, and the amount measured. Our 

models have used only the PM2.5 pollution to labeling the 

images during the training process. Therefore, they are not 

inputs in the machine learning models. This method also 

uses images taken from a stationary camera .The camera takes 

periodical pictures of the center of the city, and at the same 

time, air pollution sensors measure the exact air quality. 

Based on the air quality measurements in terms of PM2.5 

concentration, the images were labeled with six classes 

depending on the Air Quality Index (AQI) of the European 

Union, as shown in Table 1.The implications of the six AQI 

indexes are the following. AQI-1 means that the air quality 

is satisfactory, and air pollution poses little or no risk. AQI-

2 means that the air quality is acceptable. However, there 

may be a risk for some people, particularly those who 

are unusually sensitive to air pollution. AQI-3 means that 

members of sensitive groups may experience health 

effects. The general public is less likely to be affected.  

With AQI-4, some members of the general public may 

experience health effects, and members of sensitive groups 

may experience more serious health effects. AQI-5 requires 

a health alert because the risk of health effects is increased 

for everyone. AQI-6 entails issuing a health warning of 

emergency conditions because everyone is more likely to 

be affected. Ideally, a system would be able to estimate air 

pollution precisely. However, the fact that the proposed 

models are attempting to do this based on the camera 

images and not actual air pollution sensors makes it 

unreasonable to define the task as a regression problem. 

Therefore, our initial approach was to use six classes, one for 

each AQI category. We additionally redefined the problem as 

a binary classification problem, collapsing AQI-1 and AQI-

2 into the “not polluted” class, and the other AQI indexes 

into the “polluted” class. In some models, we have also 

incorporated the weather information to distinguish 

between weather conditions and pollution. The weather 

information was collected from the API endpoints of World 

Weather Online (https:/ /www.worldweatheronline.com). 

The data consists of temperature, wind speed, wind 

direction, weather description, precipitation, humidity, 

visibility, pressure, cloud coverage, heat index, and the UV 

index. This is used a simple strategy that considers the last 

measured value to handle the missing pollution 

measurements, although more sophisticated approaches 

based on generative models can be incorporated Even 

though we have merged the six classes into two general 

classes, the dataset is still highly imbalanced, and our 

models could become very biased to non-polluted images. 

For that purpose, we applied different techniques for 

balancing the dataset and evaluated their impact on the 

classification performance. 

TABLE I.  AIR QUALITY INDEX CATEGORIES 

Table 1. Air Quality Index (AQI) categories based on  

ranges of PM2.5 values and mapping to labels in. 

 

TABLE II.  DISTRIBUTION OF DATASET 

Table 2 shows the distribution of the dataset in when 

using six classes. The distribution of the dataset after 

collapsing the six classes into two for illustrative purposes 

Table 2. Distribution of the dataset in 6 classes. 

 
Dataset AQI-1 AQI-2 AQI-3 AQI-4 AQI-5 AQI-6 

Train 80,331 21,623 13,954 11,087 9862 6337 

% 56.1% 15.1% 9.7% 7.7% 6.9% 4.4% 

Test 13,342 4219 3022 987 1564 1135 

% 52.8% 16.7% 12.0% 7.9% 6.2% 4.5% 

 

This shows the different architectures’ training and testing 

accuracy, depending on the number of epochs. It is clearly 

visible that the models are stable, and after a small number 

of epochs, the performance does not vary significantly. 

However, another clear result is that the accuracy is about 

56%, the same as the majority class ratio. This means that 

the models learned to classify all images as “AQI-1,” i.e., 

the “good” AQI category. As such, the predictions are not 

useful, which was one of the main reasons to evaluate the 

binary classification approach that collapsed multiple 

categories into only two .The training and testing accuracy of 

the different architectures, depending on the number of 

epochs and whether class balancing was performed or not 

is predicted accurately. These results confirm that the 

models are stable, and after about 40 epochs, the 

performance does not vary. Note that the test set remains 

unbalanced in all experiments because the balancing is 

performed only on the training set’. The reason for that is 

that in a production setting, the camera images would not 

be going that class over the total number of images. 

 

 

 

 

 

 

   

AQI Category PM2.5 

Range 

6-Class 

Labels 

Binary 

Labels 

Good 0–50 AQI-1 Not 

polluted 

Moderate 51–100 AQI-2 Not 
polluted 

Unhealthy for Sensitive 

Groups 

101–150 AQI-3 Polluted 

Unhealthy 151–200 AQI-4 Polluted 

Very Unhealthy 201–300 AQI-5 Polluted 

Hazardous 301 and 
above 

AQI-6 Polluted 
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VI. CONCLUSION 

Our study consists of four stages. First, analyzed and 

collected meteorological data based on input image. Second, 

calculated relevant climate factors and other datas by auto 

regression analysis. Third, based on our features and RESnet, 

a comprehensive dataset con taining 3024 images have been 

constructed. Modal training is performed to derive empirical 

features and finally display the predicted class to determine 

the level of air pollution. 
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