A NESTED INFINITE RADICAL FORMULA FOR ODD NUMBERS

Treanungkur Mal
maltreanungkur@gmail.com
Independent Researcher, India

September 17, 2021

Abstract

I am going to provide a Nested Infinite Radical Formula for all Odd Numbers which are greater than 1 . Besides that, I will also prove the Proposition mentioned by various methods.

1 Introduction

Srinivasa Ramanujan had proposed a nested infinite radical problem in JIMS (Journal of the Indian Mathematical Society) in the year 1908. The problem (Q.289) says, Find the value:

$$
\sqrt{1+2 \sqrt{1+3 \sqrt{1+\ldots}}}
$$

I am going to provide a formula that would help us find the solution of the problem proposed by Srinivasa Ramanujan and later I have generalized the formula for all odd numbers bigger than 1.

Proposition 1. For all odd numbers (in the form $2 k-1$) greater than 1 we have

$$
2 k-1=\sqrt{1+4 \sqrt{1+\left(k^{2}-k-1\right) \sqrt{1+\left(k^{2}-k\right) \sqrt{1+\ldots}}}}
$$

Later, In section 2, I will be showing that how the above-mentioned formula can be proved using the nested formula given by Ramanujan, along with that I will also be showing how a nested complicated radical expression can be simplified and vice versa.

2 Generalization

I begin by proving Proposition 1,

$$
2 k-1=\sqrt{1+4 \sqrt{1+\left(k^{2}-k-1\right) \sqrt{1+\left(k^{2}-k\right) \sqrt{1+\ldots}}}}
$$

Proof: From the generalization of (1) given by Ramanujan, i.e

$$
\sqrt{a x+(n+a)^{2}+x \sqrt{a(x+n)+(n+a)^{2}+(x+n) \sqrt{\cdots}}}=x+n+a
$$

if we set $\mathrm{a}=0, x=k^{2}-k-1$, and $\mathrm{n}=1$ we get,

$$
\sqrt{1+\left(k^{2}-k-1\right) \sqrt{1+\left(k^{2}-k\right) \sqrt{1+\ldots}}}=k^{2}-k
$$

After some algebraic manipulation we get,

and this completes our proof. Now I will provide some examples which would help us understand the need for the formula (2).
Example 2.1 Find a nested radical expression for : i) 49 ii) 897
Solution. i) To find the expression required we first set

Now, using (2) we get,

$$
2 k-1=49 \Rightarrow k=25
$$

$$
49=\sqrt{1+4 \sqrt{1+599 \sqrt{1+600 \sqrt{1+\ldots}}}}
$$

ii) Again, to find the required expression we first set

$$
2 k-1=897 \Rightarrow k=449
$$

Now, using (2) we get,

$$
897=\sqrt{1+4 \sqrt{1+201151 \sqrt{1+201152 \sqrt{1+\ldots}}}}
$$

Example 2.2 Find the value of :

$$
\sqrt{1+4 \sqrt{1+425755 \sqrt{1+425756 \sqrt{1+\ldots}}}}
$$

Solution. Now for solving this we need to compare this with (2),

$$
\begin{gathered}
\sqrt{1+4 \sqrt{1+425755 \sqrt{1+425756 \sqrt{1+\ldots}}}} \\
\text { So, } k^{2}-k-1=425755 \\
\Rightarrow k=-652 \text { (rejected as } k>0)
\end{gathered}
$$

or

$$
\Rightarrow k=653 \text { (accepted) }
$$

Since k is positive so our value for k is 653 and thus our final solution is 1305 .

3 The Famous Problem

Now I will show how we can use the above-mentioned formula to solve the problem given by Srinivasa Ramanujan, i.e.

On comparing with (2) we get,

The bold portion is in the form of (2), we get,

$$
\begin{aligned}
\Rightarrow k & =-2(\text { rejected as } k>0) \\
& \Rightarrow k=3(\text { accepted })
\end{aligned}
$$

or

So our final value for k is 3 , Now on moving back to our original equation we get,

$$
\Rightarrow S=\sqrt{1+2 \sqrt{1+3 \cdot(2(3)-1)}}=\sqrt{1+2 \sqrt{16}}=\sqrt{9}=3
$$

and this completes our proof, So using my formula one can easily deduce the value of an Infinite Radical Expression.

4 Acknowledgements

I would like to thank My Mother Shukla Mal, who always motivated me in life.
I would also like to thank My Father Ashis Kumar Mal, who always encouraged me to know more about Mathematics.
Finally, I thank My Dear Brother Subhash Baur, who is the prime reason for me, being in love with Mathematics.
Moreover, Vinci Mak and Andrew Kukla also helped me a lot with this research paper.

References

[1] The Problems Submitted by Ramanujan to the Journal of the Indian Mathematical Society by Bruce C. Berndt, Youn-Seo Choi, and Soon-Yi Kang.
[2] Nested Radicals - Wikipedia.

