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Abs tract 

The inverse opt imizat ion problem deter mines the va lues o f parameters o f opt imiza t ion problem i.e .  cost  

coeff ic ient s,  coeff ic ient  mat r ix,  r ight  hand s ide vector  et c.  t hat  make the g iven feas ib le so lut ion opt imal.  

In t his paper ,  we have presented var ious  app licat ion o f inver se opt imizat ion problems report ed in t he  

l it erature.  

Keywords:  Inverse Opt imizat ion; Inverse Problem  

Introduct ion  

A var iet y o f rea l l i fe  problems can be fo rmulat ed as a  mathemat ica l programming problem and so lved  

by us ing su it able t echniques.  Whenever  we mode l t hese prob lems mathemat ica l ly ,  it  is  assumed that  all  

t he parameters assoc iat ed with the problem are known exact ly and we wish to  find the so lut ion which 

is opt imal fo r  t he present  va lues o f parameter .  However ,  in pract ice,  t here are many s it uat ions when we  

are no t  ver y much sure about  t hese parameters o r  we only have so me est imates o f t hese parameters,  but  

we may have a so lut ion fro m the obser vat ion,  exper iment  o r exper iences.  The known so lut ion may o r 

may no t  be opt imal fo r  t he present  va lues o f parameters,  so  we n eed to  adjust  t hese parameters to  make  

the given so lut ion opt imal.  This problem can be cons idered as an inverse problem,  but  whenever  we t alk  

about  opt imizat ion,  we always look fo r the best  so lut ion i. e .  t he ad just ment  o f t he parameters shou ld be  

min imum o r  t he cost  associat ed behind it  shou ld be min imum.  Thus,  an inverse opt imizat ion problem is 

to  find the va lues o f parameters (cost ,  capac it y,  t rave l t ime,  et c. ) which makes the g iven so lut io n 

opt imum and which are d iffer  fro m the given parameters as lit t le  as poss ib le.   

A Var iet y o f Inverse Opt imizat ion problems have been Invest igat ed in past  few years.  Fro m the year  

1992 to 2000 the most  o f t he researchers  had cons idered inverse opt imizat ion o f var ious combinato r ia l 

opt imizat ion problems e.g.  Inverse shortest  path problem,  spanning t ree problem,  minimum cost  flow 

problem,  min imum cut  problem,  maximum f low problem et c.  From 2000 to 2014, main ly  l inear  

programming problem,  quadrat ic  programming problem,  int eger  programming problem and fract iona l  

programming problems were cons idered fo r  inverse opt imizat ion.  Fro m 2014 onward the inverse 

opt imizat ion o f Mult i object ive opt imizat ion problem,  non linear  opt imizat ion problems,  opt imizat io n 

with no isy dat a et c have been report ed.  
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Mathematical Formulat ion  

Let  us cons ider  t he fo llowing opt imizat ion problem  

min  𝑓(𝑐, 𝑥) 

s . t .  𝑥 ∈ 𝑆         (1) 

where 𝑆 ∈ 𝑅𝑛 is  t he set  o f feas ib le so lut ions,  𝑐 ∈ 𝑅𝑛 a  given cost  vecto r.  I f �̂� ∈ 𝑆 is  t he given feas ib le  

so lut ion,  𝑐̂ ∈ 𝑅𝑛 is  t he per turbed va lue o f c  and  ‖ . ‖ be some norm t hen the inverse problem to  (1)  is  

min  ‖𝑐̂ − 𝑐‖ 

s . t .  𝑓(𝑐̂, �̂�) = min {𝑓(�̂�, 𝑥): 𝑥 ∈ 𝑆} 

 𝑙 ≤ 𝑐̂ ≤ 𝑢        (2) 

 𝑐̂ ∈ 𝑅𝑛   

Applicat ions of Inverse Optimizat ion  

1.  Geophysical Sciences  

In t he problems re lat ed to  geophys ica l sc iences,  t he mode l parameters (such as  t he radius o f 

Earth’s meta ll ic  co re)  are ver y d if f icu lt  o r imposs ib le to  det ermine,  but  we may have so me est imates o f 

t hese parameters and the va lues o f t hese parameters can be improve with the he lp o f t he va lues o f 

observable parameters.  An import ant  app licat ion based on inverse short est  path problem in the area o f 

geophys ica l sc iences is ,  pred ict ing the mo vement  o f ear thquakes (see Tornto la [36] ,  Burton [35 ]) .  In 

t he mode l o f ear thquake mo vement s,  t he geographica l zone is d iscret ized in a number  o f square ce l ls,  

where the t ransmiss io n t ime o f cer t a in se ismic waves fro m correspond ing ce l ls is  no t  known accurat ely,  

but  we have some est imates o f it .  When ear thquake is observed and the ar r iva l t ime o f resu lt ing se ismic  

per turbat ions at  var ious po int s are observed and it  is  assume that  ear thquake t rave l a lo ng shor t est  path,  

t hen the problem is t o  refine the est imates o f t he t ransmiss io n t imes between the ce lls.  

1.  Medical Imaging  

A usefu l app l icat ion o f inverse problem is ar ise in X -ray tomography [37,  38] ,  where the 

d imens io n o f a  body par t  is  est imated by the obser vat ion fro m a CT -  scan o f t hat  body par t  together  

with a pr io r i knowledge o f t he body.  

2.  Traffic Equilibrium  

In a t ranspor t at ion network,  users general ly se lect  t he route (o r flow)  that  min imize the ir  t rave l 

cost  (o r t ime) ,  t his t ype o f flow in a network ( road o r rail)  is  ca l led user  equ i l ibr ium f low,  where no  

user  can decrease his/her  cost  by chang ing his/her  route.  I f a  t ransport at ion p lanner  want s to  enfo rce 

the user  to  use a part icu lar  flow ( route)  t hen thi s flow is ca l led the syst em opt imal f low.  The user  

equ il ibr ium flow may o r  may no t  be equa l to  t he syst em opt imal f low,  in t he case when these are no t  

equa l,  a  min imum to ll can be imposed on so me road segment  o f t he route,  so  t hat  t he user  equ il ibr ium 

f low become ident ica l wit h t he syst em opt imal f low.  The problem is an example o f inverse short est  path 

problem and is report ed by Bur ton [35 ],  Dia l [1 ,2 ] .  

Ano ther  app licat ion o f inverse opt imizat io n in t ranspor t at ion p lanning is t he inverse maximu m 

capac it y path problem.  For  example,  if a  t ransport at ion p lanner  want s to  make a par t icu lar  path between 

two  cit ies,  t he maximum capac it y path between them,  where the capac it y o f t he path is  de f ined as t he  

min imum capac it y o f t he arc on the path,  t hen by us ing inverse  opt imizat ion,  t he capac it y o f t he arc o f 
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t he network are adjust ed as lit t le  as poss ible so  that  t he given path beco mes the maximum capac it y path.  

The problem is an example o f inver se maximum capac it y path problem  repor t ed by Yang and Zhang [3 ] .  

3.  Locat ion Prob lem 

A locat ion problem is to  find the best  place to  inst a ll a  fac i lit y o r  to  bu ild a cent re fo r t he syst e m 

in a g iven network (road network),  so  t hat  t he tot al cost ,  inc lud ing setup cost  and t ransport at ion cost  is  

min imum.  However ,  t here are many s it ua t ions when the cent re has a lready been const ruct ed o r  t he 

fac i l it y has a lready been fixed at  cert ain p lace,  and we wish to  mod ify the network syst em ( improving  

road, upgrading t rave ll ing too ls)  as lit t le  as poss ible so that  t he given locat ion beco mes the c ent re 

(opt imal)  locat ion.  Zhang et  al.  [4 ]  ident ified these types o f problems,  ca lled inverse cent re locat ion 

problem.  This t ype o f problems have wide app licat ions such as locat ions o f fi re  st at ions,  hosp it a ls,  

po lice st at ions,  schoo ls,  shopp ing centers,  w arehouses and many more  

4.  Product ion planning problem  

Opt imal product ion p lanning is an impor tant  process o f supp ly cha in management .  In t he present  

scenar io ,  product ion p lanning is no t  only concer n with the allo cat ion o f resources dur ing the product ion 

t ask,  to  maximize pro fit  o r  minimize cost ,  but  also  with o rganiz ing resources to  fu lfi l t he sudden market  

demand most  effic ient ly.  As we know that  a numerous product ion p lanning problems can be fo rmulat ed 

as a  linear  programming problem and we so lve them fo r  m in imiz ing cost  o r maximiz ing pro fit ,  assuming  

that  t he resources are r ig id in nature.  However ,  t he pract ica l s it uat ions are qu it e  d ifferent  where we  

have to  fu lf il t he market  demand,  which is not  possible due to  r ig id t reatment  o f resources.  In t hese  

s it uat ions the theory o f inverse opt imiza t ion fo r  linear  programming problems comes into picture.   

The inverse linear  programming problem ( Ahu ja and Or lin  [37 ] ,  Zhang and Liu [5 ]) overcome 

the defic iency o f t he exist ing linear  programming problem and provide th e flexibi l i t y over  t he allocat ion 

o f resources dur ing the product ion t ask to  match the product ion wit h the present  market  demand.  

5.  Data Envelopment  Analysi s (DEA)  

 In t he present  scenar io ,  DEA beco me the main too l to  management  sc ient ist s fo r  ana lys is o f 

o rganizat iona l per fo r mance.  It  has a wide range o f app licat ions in measur ing comparat ive e ffic iency o f 

mult ip le input s and output s o f a  ho mogeneous set  o f dec is io n mak ing unit s (DMUs) .  

The inver se DEA problem can be descr ibed as:   if we increase cer t ain inpu t  to  a par t icu lar  unit ,  

among the group o f dec is io n mak ing unit  and assume that  t he dec is io n mak ing uni t  (DMU) mainta in it s  

current  eff ic iency wit h respect  to  other  unit s t hen how much more output s could  the unit  produce? Or 

i f we want  to  increase the outp ut  to  a cert ain leve l in such a way that  t he eff ic iency o f t he unit  remains  

same then how much more input s shou ld be provided to  t he unit ? Us ing the inverse DEA mode ls t he 

DEA mode l beco me more flexib le and app licable t o  hand le t he pract ica l s it ua t ions.  Th ese t ypes o f  

problem are report ed by Amin [6] ,  Amin  and E mroune jad [7]  and Wei et  al.  [8 ] .  

6.  Time seri es and Forecast ing  

 T ime ser ies ana lys is and fo recast ing have var ious app l icat ions in t he fie ld o f research such as  

dat a mining,  bus iness,  economics,  eng ineer ing,  med ic ine,  po lit ics and many o thers.  App licat ion o f 

inverse opt imizat ion in t ime ser ies ana lys is and fo recast ing are rep ort ed by Amin  and Emroune jad [9 ] .  

Inverse fo recast ing mode l can be used to  est imate t he fo recast ing parameters much accurat e ly t hen the 
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parameters est imated by o rd inar y least  square based method.  

7.  Image Segmentat ion and Error correct ion  

In t ransmiss io n o r  communicat ion,  an image can be degraded by no ise.  There is  an under lying  

assumpt ion that  must  be obeyed by a co rrect  image an d the assumpt ion is t hat  a  co rrect  image t ends to  

have area o f unifo r m co lo rs.  Using this assumpt ion,  we can reset  or  mod ify the va lues o f co lo rs o f t he 

p ixe ls so  that  t he sum of deviat ion fro m the given co lo rs ( in t he degraded image)  plus t he pena lt y fo r  

d ifferent  ad jacent  co lo rs is  min imum.  T his is  an example o f inverse problem addressed by Hochb aum 

[38] .  

8.  Polit ica l Gerrymandering  

Gerr ymander ing is concer n with the rearrangement  o f t he boundar y o f t he const it uency to 

in fluence the outcome o f elect ion.  In pol it ica l gerr ymander ing [38 ] ,  t he goal is  to  mod ify the cer t ain 

outcome while t aking into  account  populat ion number s segmented as per  var ious po lit ica l opt ions,  and 

l imit at ions on the geomet ry o f t he boundar ies.  

9.  Portfo lio  Optimizat ion  

An investo r want s to  make dec is io n about  an investment  on n  pre-se lect ed r isky asset s,  fo r 

inst ance,  n  s tocks in a stock market .  Let  𝑟~𝑁(𝜇, 𝐺) deno te t he random return vecto r o f t he n  r isky asset s 

t hat  are no rmally d ist r ibuted with 𝜇 = (𝜇1, 𝜇2, … , 𝜇𝑛)𝑇 as t he  expected return vecto r  o f t he n  asset s and 𝐺 =

(𝜎𝑖𝑗) ∈ 𝑅𝑛×𝑚 as t he covar iance mat r ix amo ng the asset  returns,  where the mat r ix R  is  at  least  pos it ive  

semi-def in it e  (usua l ly pos it ive de fin it e) , 𝜎𝑖𝑗,  𝑖, 𝑗 = 1,2, … , 𝑛,  are covar iance between returns o f asse t s i  and 

j ,  and 𝜎𝑖𝑖 = 𝜎𝑖
2t he var iance o f i t h  asset ’s return.  Let  x i  denote t he invest ment  proport ion on r isky asset  i  

fo r  𝑖 = 1,2, … , 𝑛 t hen the po rt fo lio  se lect ion problem fo r  one s ing le per iod is t o  find the va lues x i’s so  as 

to   maximize the expected return fro m the investment  and min imize the r isk o f investor .  This po rt fo lio  

opt imizat ion problem is fo r mulat ed as different  mathemat ica l programming problems by I yenger  and  

Kang [10] ,  Zhang and Xu [11].  

Let  (�̂�, �̂�) be t he current  est imate o f (𝜇, 𝐺),  �̂� is  t he opt imal so lut ion o f t he po rt fo lio  opt imiza t ion 

problem.  Suppose new obser vat ions o f da ily return on these stocks becomes ava i lable and 𝜇1 and 𝐺1 are 

t he new est imates o f 𝜇 and 𝐺 t hen the inves to r face the quest ion that  t he po rt fo lio  �̂� is  st ill  regarded as 

e ffic ient  o r some ad just ment s shou ld be  made on the port fo lio  �̂�.  Market s t yp ica l ly have t ransact ion 

cost s,  t here fo re,  re-ba lanc ing fro m �̂� to  a  new e ff ic ient  po rt fo lio  wou ld resu lt  in a  lo ss.  On the o ther 

hand,  a  new eff ic ient  po rt fo lio  is  like ly to  have a higher  return. Thus the investo r needs to  ba lance these  

two  facto rs.  This t ype o f s it uat ion can be t ackled with the he lp o f inverse opt imizat ion [10,  11 ].  

App l icat ions o f inverse opt imizat ion in  choosing opt i mal po rt fo lio  and in o ther  problems in 

f inance are a lso  report ed by Zhang and Xu [11] ,  Carr and Love jo y [12] ,  Dembo  and Rosen [13] ,  Hart ley 

and Bakshi [14]  and Ber t s imas et  al.  [15 ] .  
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10.  Quality Control in  Product ion System  

A manufacturer  want s to  maximize the  net  pro fit  o f t he product ion syst em with a limit at ion in  

t he cost  o f maint a in ing the des ired qua l it y leve l.  However ,  in pract ice,  t he ad justment  in t he qua l it y  

leve l is  more dif f icu lt  to  adjust  t he net  pro fit  per unit  in some syst ems.  I f t he qua lit y leve l s at  each 

per iod can be det ermined by the est imat ion o f market  demand according ly,  t hen the problem face by the  

manufacturer  is  to  adjust  t he net  pro fit  o f each per iod as lit t le  as poss ib le t o  make the g iven qua l it y 

leve ls opt imal,  which is an example o f i nverse problem repor t ed by Zhang and Xu [11 ].  

 

11.  Product ion Capacity Planning  

An import ant  applicat ion o f inverse opt imizat ion in product ion capac it y p lan ning problem is  

report ed in [11] .  A product ion capac it y p lanning problem is t o  det ermine opt imal ser ver  and machine 

a llocat ion to  opt imize a chosen perfo r mance measure o f t he syst em.  Two impor t ant  t ypes o f product ion 

capac it y p lanning problems are ba lanc ing and t arget ing.  A ba lanc ing problem o f opt imal rea llo cat ion o f 

capac it y and minimizat ion o f work in pro gress is  g iven by the fo llowing convex separable program:  

Min  ∑ 𝑐𝑖
𝑛
𝑖=1 𝑓𝑖(𝑥𝑖) 

s . t .   ∑ 𝑥𝑖
𝑛
𝑖=1 = 𝑏𝑖  

 𝑥𝑖 ≥ 𝑢𝑖,  𝑖 = 1,2, … , 𝑛.               (3) 

Where,  x i  deno te t he capac it y ava ilable at  st at ion i ,  𝑏 > 0 is  t he tot al capac it y ava ilable t o  

a llocat e,  c i  is  t he est imated average va lue o f work - in-progress associat ed with each job at  st at ion i ,  

𝑓𝑖(𝑥𝑖) t he mean number  o f jo bs at  st at ion i ,  u i  t he net  rat e o f jobs ar r iving at  st at ion i  and 𝑢𝑖 >  0 fo r  all  

i .  

I f �̂�𝑖,  i  = 1,2,…,n  are opt imal so lut ion obta ined fro m the previous est imates o f c i  ( say c i’ )  and 

∑ �̂�𝑖
𝑛
𝑖=1 = 𝑏𝑖 i. e .  t he tot al capac it y ava i lable t o  allocat e is  same as previous capac it y.  Now the problem is  

to  re- dist r ibute t he capac it y at  each st at ion according to  t he new est imat ions d i  which is d iffer  fro m c i’  

as lit t le  a s poss ible.  However ,  chang ing  the capac it ie s amo ng st at ions needs to  pay so me cost ,  and on 

the other  hand the tot al work in progress can be reduced due to  re allo cat ion o f capac it y.  Now the new 

dec is io n shou ld be use o r  not ,  it ’s  depend on the t rade -o ff between the rea llo cat ion cost  and reduct ion 

o f work in progress va lue.  This k ind o f s it uat ion can be hand led by so lving the  inverse opt imizat ion 

problem o f (3)  in t he s imilar  way as done by Zhang and Xu [11 ] .  

12.  Isotonic Regression 

An impor t ant  applicat ion o f inverse opt imizat ion ar ises fro m an impor t ant  problem o f regress io n 

ca lled iso tonic regress io n.  An isotonic regress io n problem is de fined as fo llows:  fo r a  given 𝑎 ∈ 𝑅𝑛,  f ind 

𝑥 ∈ 𝑅𝑛  t hat  min imize ‖𝑥 − 𝑎‖  subject  to  const raint s 𝑥1 ≤ 𝑥2 ≤ ⋯ ≤ 𝑥𝑛 ( iso tonic it y) ,  where ‖ . ‖  is  so me 

spec if ied nor m.  Ahu ja Or iln  [3]  have shown through an example that  a  pr io r i knowledge o f a  syst em,  

where the observat ions are in non- increas ing o rder,  can be used together  with t he obser vat ions (a 1 ,  

a 2 ,…,a n)  to  est imate t he mode l parameters   ( x1 ,  x2 ,  …,  xn ),  with t he he lp o f iso tonic regress io n.  They 

a lso  report ed the applicat ions o f iso tonic regress ion in  inverse so r t ing problem and  job shop schedu l ing.   
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13  Transportat ion and logist ic s  

  

 There are many t ransport at ion mode ls based on inverse opt imizat ion  report ed by researchers.  

App l icat ions o f t hese mode ls have been observed in i mproving route recommendat ion[20,35]  and Path 

rout ing problems[21] .  

 

14  Healthcare Systems  

  

 Many import ant  app licat ions o f inverse opt imizat ion is been observed in t he fie ld o f hea lt hcare 

syst ems.  Chan et  a l.  [22 ]  propose an inverse opt imizat ion approach to  deve lop such a met r ic ,  which was  

app lied to  st age I II  co lon cancer  pat ient s .  Ayer  [23] proposed  an inverse opt imizat ion based mode l fo r  

Breast  cancer  screening.  Moreover ,  Some other  app licat ions on rad iat io n therapy t reatment  planning  

[13,24-27]  and liver  t ransp lantat ion[16 -19]  are also  been report ed in t he lit rature.  

.   

15.  Miscel laneous Applicat ions  

There are many more app licat ions o f inverse opt imizat ion in a var iet y o f rea l l ife  s it uat ions.  We 

are present ing so me o f t hem ver y br ie f ly .   

  Day et  al.  [39]  shown that  t he inverse shor t est  path problem can be app lied in the management  

o f ra ilroad impedance fo r  short est  path based rout ing.  

  Hochbaum [38]  has a lso  report ed some app licat ions o f inverse problems in Med ica l prognos is,  

Geophys ica l ana lys is,  Prot ein Synthes is and just  in t ime schedu l ing.  

  Zhou et  al.  [29]  Proposed an inverse opt imizat ion based mode l t o  increase investment  into  

renewable energy.  

  In t he recent  years,  researchers has shown the ir  int erest  in inverse opt imizat ion and it s  

app licat ions  in power  sys t ems and e lect r ic it y market s [30 -34].  
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